
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

SEEING THE FOREST AND THE TREES: TACKLING
DISTRIBUTED SYSTEMS PROBLEMS BY QUERYING

OBSERVATIONS OF EXECUTIONS
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Kamala Ramasubramanian

September 2022

The Dissertation of Kamala Ramasubramanian
is approved:

Associate Professor Peter Alvaro, Chair

Professor Ethan Miller

Assistant Professor Lindsey Kuper

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Kamala Ramasubramanian

2022

Table of Contents

List of Figures v

List of Tables x

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 Outline . 4

2 Background 7
2.1 Assumptions . 7
2.2 Requirements . 8

2.2.1 Understanding Fault tolerance behavior 9
2.2.2 Troubleshooting distributed systems 9
2.2.3 Identifying distributed systems behaviors 9

3 Understanding Fault Tolerance Under Protocol Evolution 11
3.1 Background and Motivation . 13
3.2 Methodology and Results . 15

3.2.1 Catching Bugs Early . 16
3.2.2 Dormant bugs . 17
3.2.3 Optimizations . 18

4 Understanding Fault Tolerance in Production Systems 21
4.1 Methodology . 22

4.1.1 Proof of equivalence . 24
4.2 Evaluation . 25

iii

5 Troubleshooting: Debugging 29
5.1 Background and Motivation . 31
5.2 Methodology . 34

5.2.1 Assumptions and Terminology 34
5.2.2 Correctness Specifications 36
5.2.3 Provenance Debugging Framework 37
5.2.4 Principal Strategies . 38

5.3 Evaluation . 43
5.3.1 Bug Taxonomy . 46
5.3.2 Case Studies . 47

6 Troubleshooting: Incident Localization 51
6.1 Background and Motivation . 54

6.1.1 Incident Study . 54
6.1.2 Motivating Example . 56
6.1.3 Limitations of existing approaches 59

6.2 Design & Methodology . 64
6.2.1 Inputs and Outputs . 65
6.2.2 System Overview . 66
6.2.3 Application of ACT: An example 70

6.3 Evaluation . 71
6.3.1 Determining the initial sample size 72
6.3.2 Experimental Methodology 74
6.3.3 Baseline techniques . 77
6.3.4 Results . 78
6.3.5 Integrating with Jaeger: Implementation Details 79

6.4 Iterative Localization . 80

7 Identifying Distributed Systems Behaviors 85
7.1 Methodology . 87
7.2 Evaluation . 90
7.3 Discussion . 92

8 Conclusion 94

Bibliography 98

iv

List of Figures

3.1 Concurrent-writes bug. Process M represents the master oracle;
Process C represents the client; and all Process nN processes rep-
resent active replicas. 16

3.2 Concurrent-writes bug occurs in the single-write scenario as well . 17
3.3 Optimizing for sequence numbers 18

4.1 If the goal is that the data from at least one of the broadcasts is
stored on either ReplicaA or ReplicaB, there are six ways this goal
can be achieved. 22

4.2 Representation of the different ways a broadcast can fail to occur 23
4.3 Result from running fault tolerance experiments when the user is

attempting to check out an item from an e-commerce site 26

5.1 Asynchronous primary/backup (“Async P/B”) replication protocol
in Dedalus. Persistent relations in bold. 32

v

5.2 Simplified representation of the consequent provenance graph for a
successful run of the Async P/B protocol from Figure 5.1 in reverse
chronological order top to bottom. The message-passing events
(postfixed @async in Figure 5.1) are colored turquoise. Consequent
predicate post (lines 35–39 in Figure 5.1) is colored blue. Red-
dashed vertices capture network connectivity to the respective other
node. The two red gears hint at the computations that might not
have taken place in a failed run, thus preventing the protocol from
establishing the post predicate. 35

5.3 We assume our lineage-driven distributed debugger to be tightly
integrated with an experiment selector providing the provenance
graphs that form the basis of our analyses. A human operator
applies the compiled suggestions. 36

5.4 Exemplary visualization of our three principal strategies for provenance-
based debugging. Per strategy, equal vertex numbers identify the
same logical event. Red boxes denote the result of operation leaves

on a subgraph, blue boxes show the outcome of operation reachable.
Orange-colored indices mark that the respective property evaluates
to true for that vertex. 39

6.1 Percentage of impact by category - we have represented the top five
of over a dozen different categories that emerged based on available
data. Incidents arising due to breakdown in communication be-
tween components at the application level have the highest impact. 54

6.2 Typical incident timeline . 56
6.3 This figure represents how SREs responded to an incident and the

data sources they used (logs and metrics). The mitigation steps
took SREs close to three hours, two and half of which was arriving
at the correct mitigating action. 57

vi

6.4 This is an idealized picture of graph differencing and contains only
the relevant services. On the left is a partial view of a successful
request where the token service was working as expected. On the
right, we have the trace, after the restart of the payments service
which continued to see errors due to incorrect firewall rules. . . . 57

6.5 Limitations of pairwise comparison - the two examples demonstrate
the circumstances when pairwise comparison produces false alarms
and can occur either separately or in combination. 61

6.6 Simple trace and an example of a view 65
6.7 ACT consists of applying three techniques: Symmetric difference,

thresholding and reachability - in that order. 65
6.8 CDF of the number of traces to be sampled to identify any possible

missing edge. The inlaid snippet of the CDF shows that a majority
of calls can be identified with a sample that is orders of magnitude
smaller. 73

6.9 For the cases when NodeCount and EdgeCount produce results, we
plotted a CDF of number of results. ACT, meanwhile, produces
exactly the expected answer for all of these cases. 73

6.10 CDFs of the number of results returned when we apply one or two
techniques. Since the eBay dataset is noisy, symmetric difference
and thresholding performs best, while symmetric difference and
reachability generate the best results for DSB and HDFS. When all
three techniques of ACT are applied, the result obtained is exactly
the mitigation site. 73

6.11 CDFs of time taken to obtain a result. Reachability accounts for
most of the time taken by ACT. Nodecount and Edgecount have
highly variable time to result since trace of every unsuccessful exe-
cution needs to be compared with that of every successful execution
and the number of unsuccessful executions can vary widely. 76

vii

6.12 Iterative localization cycles through projection, filtering, and local-
ization. We use ACT for localization, but projection and filtering
can produce different results depending on the choice of fields to
project down to and the results of prior localization. Two such
examples are shown here. 81

6.13 Shows the sequence of results produced by iterative localization
for an example bug in the fallback path - when db-primary fails,
db-secondary is invoked, but the call fails because of the lack of
write permissions. The result of subsequent localizations are in-
formed by and improve upon results of prior localizations. Legend:
Dashed lines represent calls. Gray nodes represent a service or ser-
vice:operationname that was in a successful execution but not in an
unsuccessful execution; blue nodes represent the reverse. Finally, a
green dashed line indicates a successful call while red indicates an
unsuccessful call. 82

6.14 Shows that even when iterative localization does not streamline
results, it can add specifics that help engineers take action. In
this case, the bug is that the call to requestmapper was critical
but not recognized as such and an RPC failure from app-server to
requestmapper caused failure of the request as a whole. Legend:
Dashed lines represent calls. Gray nodes represent a service or
service:operationname that was in a successful execution but not
in an unsuccessful execution . 83

7.1 (a) represents common design patterns such as fallbacks and caching
effects, where the red and green arrows represent failed and success-
ful calls respectively. The dotted lines represent a service to which a
call was attempted, but the message was dropped or lost in transit.
(b) is an example trace taken from a real production system . . . 87

viii

7.2 System workflow showing the steps in our methodology with a run-
ning example. The id in the mappings corresponds to identity,
which means that the fields are retained as-is. index_of indicates
that the start time is converted into a logical time and we have also
shown how status code is mapped to one of three strings. 89

ix

List of Tables

5.1 Taxonomy of 52 distributed concurrency bugs from the TaxDC col-
lection and the asynchronous primary/backup protocol from Fig-
ure 5.1. Legend: ✔ = yes, ✘ = no, ❍ = it depends. 44

6.1 This table explains how we simulate the three failure modes we
consider. For each, we describe the input, how traces are mutated
and the expected output. We also specify the conditions that need
to be satisfied in each case for a trace to be mutated. All mutated
traces represent unsuccessful executions. 74

6.2 ACT computes exactly the expected result for all but a few cases.
In contrast, NodeCount and EdgeCount produce wrong answers
for 30-50% of simulations. Answer = Set of localizations returned,
Exact Answer = Answer is minimal, Superfluous Answer = An-
swer subsumes expected result, Wrong Answer = Answer does not
contain expected result, No Answer = Answer is the null set. . . . 75

7.1 Instances of patterns in different applications 91

x

Abstract

Seeing the forest and the trees: Tackling distributed systems problems by

querying observations of executions

by

Kamala Ramasubramanian

Distributed systems are ubiquitous but continue to be challenging to understand,

build, and troubleshoot. Fundamentally, reasoning about distributed system be-

haviors is hard due to the effects of partial failures and nondeterminism in system

executions. For example, we expect systems to remain available even if some num-

ber of replicas fail. These problems are exacerbated by the dynamic nature and

scale of production systems today. Tooling support has lagged behind the pace at

which systems are being deployed, urgently requiring more research in this space.

Our overarching claim is that many common distributed systems problems

such as improving fault tolerance or debugging failures can be addressed by query-

ing observations of executions. Since our system view consists of observations of

system executions, rather than the system itself, we require that executions must

exercise varied paths to enable us to derive useful insights about the system. A

second requirement is that since events in distributed executions may be separated

by space and time, observations must capture both events and how they relate to

each other within individual executions.

Our key insight is that we need to aggregate information from many executions

while preserving the causal relationships within individual executions to answer

the posed questions. We use provenance graphs (a growing area of research) and

distributed traces, which have seen increased adoption in industry, as observations

of system executions since they capture the causality of event interactions within

executions and normalize them to aggregate information across many executions.

xi

Prior work uses observability infrastructure to aggregate information from

many executions or compares pairs of executions while preserving causal rela-

tionships within executions, but not both. Methodologies to address problems

such as fault detection, localization and anomaly detection [1–5] based on ag-

gregating logs and metrics have been explored. Other work compares pairs of

executions [6–8] for interactive debugging, performance diagnostics, workload and

capacity modeling. The former approach either disregards the causality of event

interactions within executions or attempts to infer them [9–12], producing sub-par

results, while the latter is lacking since it only considers a single pair of executions

but many varied execution paths are exercised.

In our work, we have developed and evaluated techniques for understanding

and improving fault tolerance behavior, troubleshooting systems, and identifying

instances of common design patterns that have applications in building domain

knowledge, feature development and debugging performance issues. We explore

how the problems that can be solved are constrained differently or change entirely

depending on factors such as the granularity and format of system observations,

timeline of expected response, how interactive (or not) techniques are expected to

be, and the level of detail in the result produced.

xii

To my family

xiii

Acknowledgments

My work was possible in large part due to the support of my family and guidance

of my advisors. First and foremost, thanks to mom and dad, Bharathi and Ram,

for always believing in me and supporting me throughout this journey. My sister,

Kanchana, supported me when even I doubted myself. My husband, Erik, had

my back at all times and baked me cookies to keep me going! My parents-in-law,

Bill and Ruth Cornelius, have been nothing but supportive form the get-go.

Next, I’d like to thank my advisor, Peter Alvaro, for being my mentor in this

journey. Our early work together really set the tone for my PhD and greatly in-

fluenced my dissertation research. I’d also like to thank Lindsey Kuper and Ethan

Miller for being on my advancement as well as dissertation reading committees.

Their feedback and inputs changed the light in which I considered the problems

I addressed and significantly improved the quality of my writing. Many thanks

to Jonathan Mace, who invited me to intern at MPI-SWS and also served on my

advancement committee. Jonathan helped me define my problem succinctly and

in doing so, enabled me to take the first steps towards devising ACT to effectively

localize incidents.

Thanks to Ashutosh Raina for the many brainstorming sessions and discus-

sions, especially when working on fault tolerance testing and ACT in collaboration

with eBay. Thanks to Eliana Philips for being willing to discuss and try out some

of the more far-fetched ideas when we were working together on mining microser-

vice design patterns - I really appreciate your enthusiasm and attention to detail.

Boaz Leskes from Elasticsearch facilitated my research in understanding fault tol-

erance as protocols evolve and contributed to our paper while Kathryn Dahlgren,

Asha Karim, Sanjana Maiya and Sarah Borland co-wrote the “Growing a Proto-

col” paper with me. Thank you to everyone in Disorderly Labs as well as in the

xiv

broader LSD lab for their generous and valuable feedback.

My research was supported by grants from the National Science Foundation

and by eBay. Special thanks to Ravi Punati and the entire SRE team at eBay

who took time to discuss incident management in production systems and made

themselves available to answer questions. Last, but not the least, I want to thank

Tracie Tucker, Alicia Haley, and the entire Graduate Advising team, who have

helped me navigate the various stages of the PhD program.

Thank you - I could not have done this without you all!

xv

Chapter 1

Introduction

Happy families are all alike; every unhappy family is unhappy in its own way

Anna Karenina by Leo Tolstoy

Querying observations of system executions is an effective way to tackle dis-

tributed systems problems. In this work, we develop techniques that ask questions

of observations of system executions - captured as-is without modifying the system

in any way - and use their answers to reason about the underlying system. We

then use insights from such reasoning to understand, improve, and troubleshoot

distributed systems.

Asking and answering questions is a time-honoured way of gathering informa-

tion. Today, different categories of end users pose questions and use the answers to

make decisions about implementing, operating or debugging the system in ques-

tion. We present a few example questions posed in various contexts. Designers

may ask verification related questions such as “What do all successful executions

have in common?” to characterize the behavior of successful executions. Knowl-

edge of system behavior can be used to inform good test design as well as to test

that optimizations to the system uphold desired correctness properties [13].

1

“What faults do I have no evidence my system will tolerate?” is a question

verification experts may ask when trying to understand the fault tolerance prop-

erties of the system. For a predefined class of faults, one way to understand fault

tolerance properties of a system is via fault-injection testing - checking that the

system behaves correctly while systematically injecting faults. Some examples of

fault injection frameworks include Chaos Monkey [14], for randomized fault injec-

tion, and Lineage Driven Fault Injection [15], which uses observability of system

executions to drive experiment selection. Ordering fault scenarios would reduce

the number of experiments to be run, making fault tolerance testing more efficient.

A developer debugging an outage might want to know - “How do successful

and unsuccessful executions differ?” to identify events and causal relationships

that provide actionable insights. Many engineers use incomplete and outdated

mental models and tools based on observations that provide a siloed view of the

system to answer the above question. Answering the above question automati-

cally requires effective data representation and appropriate comparison operators.

Some previous approaches [7, 16] that compare observations of executions to an-

swer this question have had limited success since their data representation lost

essential information with respect to interactions amongst system events.

To identify instances of design patterns in a running system, a developer may

ask: “What can successful executions teach us about how they succeed?” While

design templates for common behaviors such as fallbacks and caching are industry

standard and common knowledge, asking the above question allows us to discover

instantiations of these templates. Discovering possible instantiations has a wide

range of applications in building domain knowledge, feature development, and

debugging both behavioral and performance issues. Other examples of questions

that may be posed are “Is this execution anomalous?” for anomaly detection

2

or “Where are slow executions spending a disproportionate amount of time?” to

address performance regressions.

Our key insight is that, to answer the posed questions automatically, we need

to develop techniques that reason about events and how they relate to each other

within individual executions as well as in aggregate across executions. Since events

in distributed system executions can be separated in space and time, causal rela-

tionships between events in individual executions can be used to deduce system

behavior. However, an observation from a single execution represents only one

of many possible executions. To incorporate information about different execu-

tion paths as well as to paper over incomplete data, techniques need to reason

in aggregate across executions. Aggregation requires that we normalize system

observations i.e. that we only consider fields that are consistent across executions.

We typically project down to consider only service names or file:line numbers.

Since traces and data provenance capture events within individual executions

and how they relate to each other, we choose to capture observations of system

executions as traces or provenance graphs. Traces provide a request-level view

of the system. For a given user request, a trace captures its events and how

they relate to each other. The most common representation for a trace is as a

directed acyclic graph (DAG), whose nodes represent events and edges represent

the interactions between different events. Provenance [37–42] is well established in

database and systems literature for providing explanations of outcomes and can be

used to obtain causality at the granularity of system records. Other observability

signals include metrics, logs, and events.

Prior work that aggregates information uses logs or metrics to determine trends

in system behavior or uses machine learning for fault detection, localization, and

debugging [1, 2, 4, 5]. Such techniques either attempt to infer causality of in-

3

teractions or disregard them completely. Work that takes into account causal

interactions within executions typically only compares pairs of executions [6–8],

which may produce irrelevant or incorrect results.

Putting the details together, we automate solving distributed systems prob-

lems by developing techniques that reason both within individual executions and

in aggregate across traces or provenance graphs obtained by witnessing many ex-

ecutions. In this thesis, we focus on understanding fault tolerance behavior, trou-

bleshooting, and identifying behaviors of distributed systems. Next, we outline

the chapters and for each, we discuss the high-level problem and our contributions.

1.1 Outline

Chapter 2 discusses the assumptions we make about the systems under study

as well as the class of bugs we focus on finding and fixing. We also briefly discuss

the implications of our assumptions on understanding fault tolerance and trou-

bleshooting. In the next four chapters, we present work on understanding fault

tolerance and troubleshooting systems. For each of these problems, we present

two systems. One system produces record level data provenance while the other

is integrated with distributed traces. We contrast the high-level problems that

can be solved and the techniques uniquely suited to each case.

In Chapters 3 and 4, we focus on understanding and improving the fault toler-

ance of systems via fault injection testing. Our approach attempts to intelligently

choose fault scenarios that could drive the system into an undesirable state by

reasoning about observed executions.

• (Chapter 3) Modeling the data replication protocol at Elasticsearch [13]: We

modeled checkpointed versions of the data replication protocol in a specifi-

cation language (Dedalus) that produces record-level data provenance.

4

Contributions: Via this experience, we demonstrate the necessity of check-

ing the fault tolerance space of a system for each change and how we can

efficiently do so with our approach.

• (Chapter 4) Fault tolerance testing at eBay: For two payment workflows at

eBay, we explored the fault tolerance behavior of the system by employing

end to end tests that produce distributed traces for injected fault scenarios.

Contributions: To explore fault scenarios optimally when the number of

possible scenarios is large, we developed a formulation that returns the most

likely fault scenario given domain specific probabilities.

In Chapters 5 and 6, we focus on fixing bugs that arise from machine crashes

and message drops.

• (Chapter 5) Nemo [47], our prototype debugger: Nemo uses record level

data provenance to provide assistance by pointing to a line or region of code

or generates repairs to achieve correct behavior.

Contributions: To generate repairs in addition to providing assistance

with debugging, we extend differential reasoning using provenance graphs

of executions to co-analyze the provenance of correctness specifications. We

also provide a new taxonomy of real-world distributed systems bugs that

our techniques apply to.

• (Chapter 6) ACT now: Aggregate Comparison of Traces for Incident Local-

ization [48]: Our incident localization framework takes as input distributed

traces and produces actionable insights for engineers to take action.

Contributions: To overcome the challenges of using traces from production

systems, we have developed techniques that compare sets of traces rather

than pairs of traces which enables automated and effective incident local-

5

ization. We have also integrated ACT with Jaeger, an open source tracer,

to enable online comparison of sets of traces.

In Chapter 7, we discuss nascent work identifying instances of common design

patterns by querying observations of system executions. This work has a wide

range of applications and has produced promising preliminary results. Chapter 8

concludes and outlines future directions for work.

6

Chapter 2

Background

To answer the how and why questions of distributed systems executions, we

exploit observations of system executions. Specifically, we use observations in the

form of data provenance and distributed traces. In this chapter, we first discuss

assumptions we make about the systems under study. We also discuss the class

of bugs we focus on finding and fixing and the additional requirements systems

need to meet for our techniques to be applicable to address a given problem.

2.1 Assumptions

We predicate our work on three main assumptions. First, we assume pro-

cesses communicate via message passing and therefore, system observations cap-

ture some, but not necessarily all, causal relationships for a given execution.

Distributed traces and data provenance are represented as graphs where nodes

correspond to events and edges between two nodes indicate a causal relationship

between them. Causality captured in graphs represents happens-before relation-

ships in system executions.

Our second assumption concerns correctness of system executions. Traces can-

7

not be used to establish correctness since they may not have enough information

to do so. For example, correctness properties involving system state cannot be

checked using traces since they do not capture distributed state. Rather, execu-

tions are tagged as successful or unsuccessful based on external success criteria

that serve as a proxy for correct system behavior. We make stronger assumptions

when using data provenance. In addition to being able to determine if a given

execution is successful or not, we assume that the program and the correctness

guarantees are written in the same specification language.

Finally, we assume that non-determinism in system executions arises from non-

deterministic effects in the environment and not from programs. Some examples

of such environmental effects include randomization of instance selection, partial

failures and network delays. We use this assumption when we expect executions

that exercise the same functionality, given the same inputs and schedule, to take

similar paths through the system. As a result, our techniques are not suited to

reason about systems that incorporate randomized algorithms.

2.2 Requirements

We focus on finding and fixing bugs characterized by omission faults. In the

omission fault model, processes may crash and messages may be dropped. To be

characterized by an omission fault implies that a particular fault combination,

once found to trigger a bug, always triggers the bug and is not dependent on

environmental factors such as timing or network delays. We do not reason about

concurrency bugs that are triggered by non deterministic scheduling orders.

As discussed previously, there are many possible execution paths and system

executions exercising the same functionality often vary due to non-determinism in

the environment. Therefore, it is necessary to aggregate information by witnessing

8

observations from a large number of executions to reason about overall system

behavior. Next, we outline requirements specific to each of the problems for

which we have developed techniques to address.

2.2.1 Understanding Fault tolerance behavior

Since the space of inputs is large, to focus computational resources on fault

selection, we require that inputs to programs being checked be pre-selected. Sec-

ondly, to explore faults that include process crashes and message drops, we require

record-level provenance to be captured. Record-level data provenance captures the

processes and messages in a system execution while distributed traces only cap-

ture the processes explicitly while the messages are implicitly captured based on

the calls between processes.

2.2.2 Troubleshooting distributed systems

In our work, troubleshooting distributed systems takes two forms - debugging

and incident localization. Our techniques for debugging use provenance graphs

as inputs to provide assistance and in some cases generate repairs. To make this

possible, we not only require correctness specifications to be written down in the

same specification language as the program, but further require that they are writ-

ten down as implications of the form “if <condition holds>, then <corresponding

expected behavior>”.

2.2.3 Identifying distributed systems behaviors

We analyze observations of successful executions to identify possible instan-

tiations of well-understood design patterns. In some cases, we need to compare

observations from two or more executions. We require that the analyzed observa-

9

tions reflect the effects of only one change to the system. In our setting, a single

change translates to failure of an RPC call or service instance crash. This require-

ment is necessary since different changes can interact with each other leading to

false positives that we cannot disambiguate. Although false positives are still pos-

sible, more deterministic executions with higher quality system observations will

produce fewer false positives.

In this chapter, we have made explicit our assumptions when using data prove-

nance and distributed traces as system observations. We have also outlined the

class of bugs we solve for as well as additional requirements systems need to meet

for each of the problems we consider. These constrain the problem space and we

will refer back to them in future chapters.

10

Chapter 3

Understanding Fault Tolerance

Under Protocol Evolution

For a system to be fault tolerant, it should behave correctly for every combi-

nation of some predefined class of faults. Correctness can be defined using criteria

such as if the system upholds safety guarantees, is functional and available, pro-

duces anticipated results for different classes of inputs, or if system functionality

degrades gracefully in the face of failures. We consider omission faults in our work

- where processes may crash and messages may be dropped.

One approach to gaining confidence that a system works correctly under faults

is via fault injection testing. Fault injection testing methodologies answer the

how of fault injection. Approaches such as ChaosMonkey [49] and Gremlin [50]

actuate random failures and check if the system behaves as expected. Other ap-

proaches [51,52] simulate fault scenarios in requests and avoid the cost of actuating

failures in the system. The fault space of a system is exponential in the number

of system components even if we restrict ourselves to crash faults only. Therefore,

an exhaustive search of the fault space is intractable.

Lineage Driven Fault Injection [15], which reasons about the fault tolerance

11

behaviors of systems via fault injection testing by asking the question: “What do

successful executions have in common?”, represents the closest related work. We

have built upon this work in two ways: a) We have demonstrated that the method-

ologies developed can be applied iteratively to different versions of the protocol as

it evolves and by so doing, we have shown the necessity of fault tolerance testing

after every change to the program. and b) We have developed a formulation for

determining the most likely fault scenario that we should explore next based on

probabilities of failure associated with components.

We evaluate the fault tolerance behavior of two systems - one that produces

provenance for its runs while the other is integrated with distributed tracing:

• We have modeled Elasticsearch’s data replication protocol (similar to primary-

backup) in Dedalus (an extension of Datalog) that produces data provenance

for its runs. We discuss how we evolved the protocol in detail in this chapter.

• In our work at eBay, we considered end to end tests corresponding to two

payment workflows and attempted to drive the system into an undesirable

state by intelligently choosing fault combinations. This is the focus of the

next chapter.

We combine insights from observing system executions when injecting faults to

reason about the fault tolerance behavior via two questions : 1.) What do obser-

vations of successful executions tell us about the fault tolerance of the system?

and 2.) What fault scenario should we explore next? While we need to answer

both questions when reasoning about observations and determining the next fault

scenario to explore, we will focus on the first question in this chapter and on the

latter in the next. Section 3.1 motivates the problem while Section 3.2 provides

an overview of our methodology and describes the main results and takeaways.

12

3.1 Background and Motivation

Common distributed systems wisdom warns us never to reinvent. If we have

a problem requiring consensus, we use Paxos [53] (or Raft [54]); if we need strong

consistency data replication for availability, we use Primary/Backup [55] or Chain

Replication [56]. To disseminate updates, we use reliable broadcast [57]. Best

practices dictate that we invariably choose a well-understood (and, ideally, for-

mally verified) protocol as the basis of our implementation.

Because the protocols used to solve these problems are mature, it might appear

that protocol design is mostly a thing of the past: modern systems designers can

merely take mechanisms “off the shelf” and enjoy the guarantees of hardened

subsystems while constructing otherwise novel applications.

Any practitioner, however, will quickly identify this as a fallacy. Even ini-

tial protocol implementations tend to differ significantly from their specification.

Furthermore, over the lifetime of a system, protocol details undergo a series of

optimizations in response to particular use cases. Since such optimizations can

range from the fussy (e.g., tweaking timeout parameters) to the fundamental (e.g.,

bypassing protocol steps based on assumptions about the common case), it can

be challenging to know which implementation changes are tantamount to changes

in the specification (which would in principle then need to be reverified). Such a

circumstance places implementers in the bad position of deriving false confidence

from assertions that their implementation is “essentially Primary/Backup”.

Software engineering best practices provide us with a variety of tools for ensur-

ing program correctness over the course of a development lifecycle. For example,

regression testing techniques ensure future optimizations do not re-introduce bugs

previously encountered in earlier stages of system development. When dormant

bugs manifest in later system versions, root cause analysis techniques allow us to

13

replay “bad inputs” over the commit history until we identify the version in which

the bug was introduced.

Unfortunately, both these techniques associate aberrant behaviors (i.e. bugs)

with the inputs that trigger them. A regression test ensures a bug triggered by

a given input is never re-introduced by making the replay of the input part of

the regression suite. Root cause analysis identifies the first version in which a bug

appears by replaying the particular input that triggered it at all previous commits.

Fault tolerance properties of distributed systems, by contrast, assert the sys-

tem computes a correct outcome even in the face of a predefined class of faults,

such as machine crashes and network partitions. Consequently, the classic soft-

ware quality techniques described above are useless. Subtle changes to protocols

can fundamentally affect fault tolerance characteristics; seemingly innocuous mod-

ifications may trigger incorrect behaviors.

Notably, an input known to trigger a bug in a particular version of the proto-

col is not guaranteed to trigger the same bug in a different version. As a result,

regression testing, as we currently employ it, is fundamentally too weak to pre-

vent fault tolerance regression bugs. Root cause analysis is similarly inadequate,

because a set of faults triggering bugs in later versions may fail to do so in an

earlier version.

As a simple example, in a three node system with one primary and two fol-

lowers, the system should behave identically when either of the followers crash.

That is, we expect identical behavior for the two fault scenarios F1 crash and F2

crash, where F1 and F2 represent Follower1 and Follower2 respectively. Needing

to consider a class of inputs means that we need to perform a principled search of

the space of execution schedules on every commit, but an exhaustive search of the

space of possible combinations of faults is intractable. To guide our exploration of

14

the fault space, we use LDFI [15] - an analysis and fault selection framework that

builds a model of the system based on good system executions and only explores

fault scenarios that can potentially force the system to a bad state.

3.2 Methodology and Results

Record-level data provenance may reveal multiple ways for the protocol to

achieve correct behavior in a single run. Only a fault scenario that falsifies all

of these will either reveal additional information - a new way for the protocol to

succeed - or force the system to a bad state.

The core Elasticsearch data replication protocol is a variation of primary

backup. All client requests are routed to the primary and a request is acknowl-

edged only after the primary receives acknowledgements from all replicas. While

building the system, we defined incomplete versions of the protocol starting with

the core functionality, the last version being as close to the real system as possi-

ble. Each version, as a result of being incomplete, had historical bugs. Discovering

these issues that were not caught by conventional software engineering techniques

gave us confidence that our approach is effective.

Since the Elasticsearch API guarantees focus around a single document, we

modeled a single document with concurrent accesses, rather than multiple inde-

pendent documents. For simplicity, we focused on an cluster with one primary

and two replicas. To further simplify the evaluation process, the specification also

allows the existence of a master oracle omniscient with respect to the state of all

other processes in the system. The master oracle abstracts away the running of

some correct consensus protocol internally on a group of servers.

15

Legend

Process M
Process C

Process nN

Master Oracle
Client

Active Replicas

Figure 3.1: Concurrent-writes bug. Process M represents the master oracle;
Process C represents the client; and all Process nN processes represent active
replicas.

3.2.1 Catching Bugs Early

There are many instances in the software development cycle for a bug to be

introduced, the first of which is when a protocol specification is converted to

an implementation. During our case study, we found a bug which manifested

precisely from such a translation scenario.

As illustrated in Figure 3.1, after sending two concurrent writes to two dif-

ferent nodes in the system, LDFI tested a scenario in which one of the writes

is replicated successfully while the second write is replicated on only one of the

replicas. Then, before the second write replicates on the other node, the primary

fails over. Subsequently, the node on which the latest write request has not been

replicated becomes the new primary. The two replicas are now (and will forever

remain) inconsistent.

Discovering the bug requires primary failure after launching successful writes

to only a subset of backup replicas. Furthermore, a replica from the unlucky sub-

16

set must become the new primary. The main difficulty in catching this bug using

techniques such as test-driven development or regression testing is the manual

derivation of relevant test cases. LDFI offers a better alternative by generating

such scenarios automatically. The technique analyses the flow of data through-

out the system for a simulated correct execution and iteratively examines the

protocol’s responses to different message drop/process crash combinations.

3.2.2 Dormant bugs

Figure 3.2: Concurrent-writes bug occurs in the single-write scenario as well

When we discover a bug, we would like to go back in history to determine the

version at which the bug was introduced. This is because a bug can lie dormant for

a long time before it is discovered. As an example, after discovering the bug with

concurrent writes, we were able to reproduce the bug in the case in which there

was only a single write. Figure 3.2 represents this exact scenario. As can be seen,

the two bugs are similar, but do not manifest from the same fault scenarios. This

reinforces the claim from our motivating example that techniques such as root

cause analysis as they are generally deployed would not be effective in reasoning

about the fault tolerance properties of distributed systems.

In this particular case, in a system supporting concurrent writes, we would

have witnessed the same interactions as the single write scenario with appropriate

17

Figure 3.3: Optimizing for sequence numbers

input data. This brings into sharp focus the fact that the input data we start

with matters in finding interesting bugs.

3.2.3 Optimizations

Once a protocol implementation exists, practitioners naturally optimize for

performance or carry out functionality extensions. However, some optimizations

may change the specification and without further verification, we cannot (or at

least shouldn’t) offer statements regarding correctness.

Sequence Number Optimization A seemingly minor optimization can result

in a serious fault tolerance bug. In Elasticsearch, the primary locally chooses

monotonically increasing sequence numbers to enforce ordering on concurrent re-

quests. Sequence numbers were introduced to prevent newer data from being

overwritten. To avoid extra processing, the following rule was applied: If the

18

sequence number associated with a write request has been seen before, drop the

payload but acknowledge the request.

Now consider a scenario in which the primary fails over after sending write

requests from a client to a subset of the backup replicas. Suppose further that a

replica ignorant of the write takes over as the primary and receives a new write

request. Since sequence numbers are locally determined by the primary, it may

pick the same sequence number as the incomplete write. It will then send the

write to all the active replicas. However, some replicas may drop the write in

adherence to the above optimization. Figure 3.3 demonstrates one instance of

such an execution. Fortunately, LDFI quickly and automatically discovers such a

scenario by using the initial successful execution to test fault scenarios that may

cause failures.

The above represents just one scenario in which verification can catch bugs

in optimizations. Optimization carries the risk of introducing entirely new bugs

capable of breaking the end-to-end properties of the system, which is best handled

by verification-based tools.

Checkpoint Optimization When a new node is promoted as primary, a re-sync

is necessary to ensure that all the active replicas in the system are consistent with

the new primary. In the initial model, all writes were replayed to the replicas.

However, this is extremely expensive and inefficient as only operations that weren’t

acknowledged to the client need to be replayed. Therefore, we model a checkpoint

optimization using local and global checkpoints to ensure the entire history of

acknowledged messages is not resent to replicas upon the election of a new primary.

Each replica maintains a local checkpoint while a global checkpoint is the minimum

of all local checkpoints. A newly elected primary only sends update messages to

replicas possessing a sequence number greater than the global checkpoint. This

19

variation of the protocol introduces a fair amount of complexity, but produces no

counterexamples when run against LDFI.

To summarize, simplicity of an optimization is not a consideration in determin-

ing if the correctness guarantees of a system have been violated. In this section,

we demonstrated how a seemingly simple optimization breaks system guarantees

while another more intricate one doesn’t.

In this chapter, we have described our experience seeking a middle ground be-

tween formal verification and software testing techniques while developing a novel

distributed protocol intended for a real-world, production environment. Given our

success, we are optimistic that tools like LDFI are a step in the right direction.

However, to be clear, we do not believe in a one-size-fits-all solution. Our experi-

ence confirms our intuitions that the future of fault tolerant software development

is unlikely to come in the form of a single verification methodology. Rather, we

see a future in which tool support for distributed software implementation, evo-

lution, and debugging is improved in a variety of directions. In the next chapter,

we discuss our experiences exploring the fault tolerance behavior of production

systems and how we navigate this space, which may be much larger, efficiently.

20

Chapter 4

Understanding Fault Tolerance in

Production Systems

For many large systems, functional and end-end tests that validate system

functionality are checks of system correctness. Distributed traces are the state

of the art for production systems today rather than the more fine grained record

level provenance. Given end-to-end tests associated with an external success mea-

sure, we want to ensure that for every combination of faults (in this case, crash

faults), the behavior of the system is correct. Due to the scale of systems under

consideration, the number of fault scenarios that can lead to a potentially bad

state can be many. Therefore, we developed a formulation to order fault scenarios

by their likelihood of occurrence based on domain specific probabilities as a way

to navigate the (potentially) large space of fault scenarios.

In section 4.1, we describe the intuition of our approach, present the under-

lying mathematical formulations and prove the equivalence between different for-

mulations to find the most likely fault scenario efficiently by taking advantage of

advances in Integer Linear Programming (ILP) solvers. In Section 4.2, we dis-

cuss the results of using our methodology for two payment workflows at eBay

21

and compare them with that of a randomized fault injection framework, such as

ChaosMonkey [49].

4.1 Methodology

G

RepA RepB

Bcast1 Bcast2 Bcast3

Figure 4.1: If the goal is that the data from at least one of the broadcasts is
stored on either ReplicaA or ReplicaB, there are six ways this goal can be achieved.

Consider Figure 4.1 as an example. To falsify the goal that data from at least

one of the broadcasts is stored on either ReplicaA or ReplicaB, one element in

each set needs to have failed.

{RepA OR Bcast1} AND {RepB, Bcast1} AND

{RepA OR Bcast2} AND {RepB OR Bcast2} AND

{RepA OR Bcast3} AND {RepB OR Bcast3}

The highlighted solutions in Figure 4.2 represent fault scenarios, either of which

could potentially force the system into a bad state. Our formulation answers the

question of which fault scenario we should explore next.

By observing that every fault scenario has to contain an element from each set,

we can formulate the problem as the minimal hitting set problem. To order fault

22

G

RepA RepB

Bcast1 Bcast2 Bcast3

OR

G

RepA RepB

Bcast1 Bcast2 Bcast3

Figure 4.2: Representation of the different ways a broadcast can fail to occur

scenarios by increasing cardinality from the smallest to the largest, the minimal

hitting set problem can be formulated as follows:

Given a finite set S and a collection P ≡ {P1, . . . Pn} where each Pi ⊂ S ∀i ∈

1 . . . n, the minimum hitting set of P is a set H ⊆ S such that for all i ∈ 1, . . . n,

Pi ∩ H ̸= ∅ (4.1)

∄H ′, H ′ ⊂ H ∧ Pi ∩ H ′ ̸= ∅ (4.2)

That is, H is the smallest set of elements from S that “hits” every Pi ∈ P by

intersecting with it on at least one element.The minimal hitting set formulation

produces exactly the same results as before but orders the solutions by increasing

cardinality. It is equivalent to set cover and known to be NP-Hard [58].

To take advantage of state-of-the-art optimizations for integer linear program-

ming solvers, we re-formulate the problem as an optimization problem. To do so,

we define following additional notation. For all j ∈ 1 . . . |S|, let Xj correspond to

the jth element of S according to some arbitrary ordering. Xj is interpreted as

an integer that is either 0 or 1 - intuitively, it is 1 if is is “selected” as being part

of H. Let Mij be 1 if the variable j appears in Pi, and 0 otherwise. The minimal

hitting set problem is now written as the following ILP problem:

23

minimize
|S|∑
j=1

Xj

subject to
n∑

i=1
MijXj ≥ 1

(4.3)

Solutions to our formulation return fault scenarios by increasing cardinality.

The scenario with the smallest number of elements may not be the most likely to

occur, however. We incorporate domain specific failure probabilities to find the

most likely fault scenario. If the probability of failure is equal for all events, the

solutions returned would be identical to those returned in the minimal hitting set

formulation. To order the fault scenarios by likelihood of occurrence, we re-write

our objective function as follows:

maximize
|S|∏
j=1

Pr(j)Xj

subject to
n∑

i=1
MijXj ≥ 1

(4.4)

where Pr(j) is the probability of failure of the event corresponding to the jth

element of S. We rewrite it so the optimization is linear and prove that the two

forms are equivalent.

maximize
|S|∑
j=1

xjlog(Pr(j))

subject to
n∑

i=1
MijXj ≥ 1

(4.5)

4.1.1 Proof of equivalence

Both formulations (4.4 and 4.5) share the same constraints, only the objective

functions are different. We denote the objective function of 4.4 as f1 and that of

4.5 as f2. Each Xj is either 0 or 1 and Pr(j) denotes the probability of failure

24

(ranging between 0 and 1) of the event corresponding to the jth element. We show

that the formulations in 4.4 and 4.5 return the same solutions in the same order.

Let s1 be a solution that maximizes f1. We show that s1 is the first solution

for f2 as well. Suppose not. Suppose there is another solution s2 that maximizes

f2. Then, 2f2(s2) > 2f2(s1), which in turn implies that f1(s2) > f1(s1). This is a

contradiction since we know that s1 is a solution that maximizes f1.

The converse can be shown similarly. Let s2 be a solution that maximizes f2.

We show that s2 is also maximizes f1. Suppose not. Suppose there is another

solution s1 such that f1(s1) > f1(s2). Then log(f1(s1)) > log(f1(s2)) which implies

that f2(s1) > f2(s2). We have arrived at a contradiction since s2 is a solution that

maximizes f2.

In our work, we set the probability of failure of a service to be proportional

to the rank of the service in the trace and iteratively generated fault scenarios.

Using distance of a service from the root of the DAG as a proxy for its impact

mimics how engineers think, making it a realistic measure. That is to say, a fault

scenario involving a service close to the root of the trace is more likely to drive

the system into an unexpected state than one that is far away from the root.

Secondly, exploring fault scenarios that involve services close to the root of traces

first enables us to prune large sections of the fault space if they are tolerated,

reducing the number of experiments that need to be run.

4.2 Evaluation

We carefully select tests to exercise end to end functionality when checking

out items at eBay. We test two workflows - users adding items to a shopping

cart(CreateCart) and completing the purchase(MakePurchase). Each of these

represents a complete user action and produces a trace for every action. Traces

25

1

5 2 3 4

10 11 15 912 188 13 14 16 24

3217 1920 21

31

35

33

67

27 2522 23 38

29

36

28

3730

26

34

(a) Bugs found in the path corresponding to adding item(s) to a cart

1

2 3 4

7

11

65

16

810

12

915

13

14

(b) No bugs found in the path corresponding to making the purchase

Figure 4.3: Result from running fault tolerance experiments when the user is
attempting to check out an item from an e-commerce site

touch many services and we employ our formulation with traces as input to de-

termine likely fault scenarios to explore.

To find the next fault scenario to explore, we take as input traces from all

previous successful runs of a given test. Using our formulation, we associate

probabilities with different services and find the most likely fault scenario. We

then inject the suggested fault and re-run the test. Either, the test run is successful

26

and we collect another trace from a successful test run or we have discovered a

bug. We run tests repeatedly until we have exhausted fault scenarios and there

are no bugs or we discover a bug.

To present our results succinctly, we unified the nodes and edges seen in indi-

vidual traces into a single graph. These are represented in Figure 4.3. The green

nodes represent services that are to be excluded from fault tolerance testing, the

pink nodes are services in which a fault was injected and found to be tolerated,

the gray nodes are services in which we do not need to inject faults based on the

observed graphs and the red nodes are services in which we discovered bugs.

In the CreateCart workflow, we discovered 6 bugs (Figure 4.3a), all of which

we found in a few hours. These range from a known product issue for which a bug

had already been raised, unexpected behavior and incorrect status code reporting.

In the MakePurchase workflow, we found no bugs (Figure 4.3b) and by ordering

the fault scenarios, we performed only 7 experiments in total. Not finding bugs is

an important result as it tells us when we can stop fault tolerance testing.

As a baseline, we wrote a fault injector that simulates injecting faults uniformly

at random. The probability associated with every fault scenario is the same, unlike

with our approach. As the number of services in the system increases, the space

of possible scenarios expands exponentially, making it unlikely that we will hit

upon a likely fault scenario by random exploration. To find the same bugs that

we did, the random fault injector would take an order of magnitude more number

of experiments. The confidence interval for the number of experiments needed is

[157, 264], with a confidence level of 0.95 - calculated via the t-test.

Our results demonstrate that a prioritized approach to fault tolerance testing

that biases towards reducing the space of fault scenarios is useful when testing

workflows using end-end tests. Ordering fault scenarios helps reduce the fault

27

space to be explored by explicitly using causality of interactions to determine the

optimal fault scenario to be explored based on the witnessed traces. Ordering

is achieved by re-posing the problem as an optimization problem and iteratively

solving it. Our results from running experiments are promising since we were able

to complete both the experiments within a few hours for both workflows.

We have described both the formulation we developed to determine the most likely

fault scenario as well as how we use system observations to reason about the fault

tolerance of systems. Our principled approach to exploring the fault space has

found bugs in two different systems and more importantly, has concluded that

there are no more experiments to try in one payment workflow. The latter is an

important result which fosters confidence in systems since exhaustive testing is in-

tractable. In the next two chapters, we discuss how we can effectively troubleshoot

distributed systems.

28

Chapter 5

Troubleshooting: Debugging

In this chapter and the next, we focus on troubleshooting distributed systems

for bugs that are triggered by faults such as crashes and message loss. Specifically,

we consider debugging - the act of finding and fixing a bug - and incident local-

ization - identifying the location, for eg. a component, where engineers can take

action to restore the system. For both problems, the end goal is for the system

to behave correctly.

Correct system behavior can be defined in a variety of ways. Examples in-

clude system upholding safety properties, being functional and available, produc-

ing anticipated results for different classes of inputs or the functionality degrading

gracefully in the face of failures. Oftentimes, the success or failure of executions

is determined by an external criteria such as a HTTP request returning 200, a

credit card being successfully charged, page pieces being correctly loaded, etc.

Engineers employ such an external success criterion to automatically mark exe-

cutions as successful or unsuccessful.

To troubleshoot systems, asking how can lead us to answering the why. We

take as inputs observations of successful and unsuccessful executions and reason

about failures by asking: How do successful and unsuccessful executions differ?

29

By asking the above question, we developed two systems that aid troubleshooting:

• A prototype debugger, Nemo [59], that uses record level data provenance to

provide assistance by pointing to a line or region of code or generate repairs

to achieve correct behavior. We will discuss Nemo in depth in this chapter.

• ACT, our incident localization framework, that takes as input distributed

traces and produces actionable insights for engineers to take action. ACT

is the focus of Chapter 6.

Debugging involves finding and fixing a line or region of code as a result of

which failures arise. For failures involving an incorrect transition, a faulty con-

figuration line, or an off-by-one loop bound, identifying a line or region of code

to modify helps fix it. Failures that are a result of insufficient synchronization

or redundancy typically require the program to add rules to specify the protocol

more completely. We refer to these as commission and omission failures respec-

tively. Our taxonomy for 52 bugs from large-scale distributed systems [60] shows

the prevalence of commission and omission failures.

Recent work has shown the use of data provenance in debugging distributed

systems [44, 46, 61], fault localization [62] and network diagnostics [45, 61, 63, 64].

We build upon prior work and have developed techniques that provide assistance

and can even generate repairs when the correctness specifications are written in

the same provenance-enhanced language as the program. We generate repairs by

by co-analyzing the provenance of the system state with the provenance of the

specification predicates. Because the specification describes the non-distributed

behavior of the program, it guides the generation of code changes that correct the

distributed program towards compliance with its sequential specification.

The rest of the chapter is organized as follows: In Section 5.1, we present a

motivating example that serves as a running example throughout the chapter.

30

In Section 5.2, we discuss our assumptions and principal strategies. In Section

5.3, we provide a new taxonomy for 52 real-world distributed bugs from large-

scale distributed systems [60], determining for each whether our framework can

suggest program corrections or provide debugging assistance. Then, we discuss

our results using Nemo to repair errors of omission and identify root causes of

errors of commission in six protocol implementations, of which we discuss four in

case studies.

5.1 Background and Motivation

To motivate our approach, we start with a simple, “buggy” protocol implemen-

tation. Figure 5.1 shows a programmer’s first attempt at implementing prima-

ry/backup replication [65] in the declarative programming language Dedalus [66].

Dedalus is a subset of Datalog [67] with negation that also allows for reasoning

about programs’ behavior over time. Starting with the inputs, data flows through

defined relations in increasing logical time steps until no further updates are pos-

sible. @next and @async represent when data propagates between relations if the

necessary conditions are met - @next implies propagation at the next time step,

while @async implies propagation at some future time step. Once all updates

are made, the correctness specifications are evaluated to determine if the system

behaves as expected for the given inputs.

In our example, a single “primary” node accepts requests to write data items,

disseminates them to passive “backup” nodes, and ultimately responds to clients.

The correctness specification for primary/backup is shown in lines 33–39 of Fig-

ure 5.1. If a payload was marked as acknowledged in table acked at the client

(antecedent predicate pre, lines 33–34), then it must appear in the log of all

non-crashed nodes in the system (consequent predicate post, lines 35–39). In any

31

1 // Initially, client Cli sends request Pload to
2 // primary node Prim via the network (@async).
3 request(Prim, Pload, Cli)@async :-
4 begin(Cli, Pload),
5 conn_up(Cli, Prim);
6

7 // Asynchronous version of primary/backup:
8 // On receipt of a request, the primary immedi-
9 // ately sends an acknowledgment to the client.

10 // Clients persist acknowledgments.
11 ack(Cli, Prim, Pload)@async :-
12 request(Prim, Pload, Cli);
13 acked(Cli, Prim, Pload) :-
14 ack(Cli, Prim, Pload);
15

16 // The primary replicates received requests
17 // in background to all replicas Rep.
18 replicate(Rep, Pload, Prim, Cli)@async :-
19 request(Prim, Pload, Cli),
20 replica(Prim, Rep);
21 // Primary and all replicas write received
22 // requests durably to local storage.
23 log(Prim, Pload) :-
24 request(Prim, Pload, Cli);
25 log(Rep, Pload) :-
26 replicate(Rep, Pload, _, _);
27

28 // Correctness specification:
29 // As soon as a client received an acknowl-
30 // edgment for its request (pre),
31 // the request’s payload is durably stored
32 // on all alive nodes (post).
33 pre(Pload) :-
34 acked(Cli, Prim, Pload);
35 post(Pload) :-
36 log(Node, Pload),
37 primary(Prim, Prim),
38 notin crash(Node, Node, _),
39 Node != Prim;

Figure 5.1: Asynchronous primary/backup (“Async P/B”) replication protocol
in Dedalus. Persistent relations in bold.

32

run where this is not the case the correctness expectation is violated (details in

Section 5.2.2). The rest of the protocol works as: the primary accepts requests

from clients (request, lines 3–5) and replicates them to all replicas (replicate,

lines 18–20), which store them durably in their local state (log, lines 23–26).

Unfortunately, the programmer has tried to optimize this protocol for per-

formance. Lines 11–14 show that an acknowledgment for a request is sent from

primary to client immediately when it was received. Primary crash or loss of repli-

cation messages could prevent the request from becoming durable despite having

been acknowledged at the client!

Suppose the programmer found the bug during a test and was able to reproduce

it. The laborious process of finding its root or proximal causes has only just begun.

Conventional debugging approaches like grep’ing through logs from all nodes or

attaching legacy debuggers to each are no help at all, as this protocol-level bug

arises not on individual nodes per se, but in their interactions across space and

time. Distributed provenance [15, 46, 68] stitching together node-local views into

explanations of how data transited a distributed system seems a more appropriate

tool for this kind of debugging. Abstracting from details specific to the collection

process, in Figure 5.2 we show a provenance graph explaining how a tuple marking

establishment of predicate post was computed in a successful run of the protocol

from Figure 5.1. Unfortunately, even the trivial motivating protocol presented

here produces in total a set of provenance graphs with 280 vertices and 205 edges,

making it impractical to debug by staring at them.

Differential provenance by Chen et al. [61] refines provenance to specifically aid

in root cause analysis. By automatically visualizing the difference between a suc-

cessful and a failed provenance graph, it allows users to quickly identify key events

that differentiate between an observed failed and a known successful run. Unfor-

33

tunately, while differential provenance has been shown to help highlight critical

errors in configuration, input data, and even program logic (i.e., the presence of a

mistake), the bug in our replication protocol has no such smoking gun. Rather, it

is the absence of necessary synchronization that makes the protocol fail to uphold

its contract - there is no bad line or tainted data to point to.

Readers familiar with replication protocols know how to work around the prob-

lem: the primary has to postpone client acknowledgment until after confirmation

from backups. Implementing this fix, however, requires more than finding and fix-

ing an incorrect program statement - something is missing and needs to be added.

We appear to be at an impasse. We cannot debug the program by comparing suc-

cessful and failed runs, because the successful runs provide no hint about how

to fix the fundamental problem. Instead, the programmers need to rethink the

program’s logic. Or do they? In this work, we provide evidence that we are able

to generate corrections for these kind of problems in a great many cases.

5.2 Methodology

We begin this section by reviewing the assumptions we make for our strategies

to be effective and introduce necessary terminology. We then describe the query

language and capabilities of our provenance debugging framework.

5.2.1 Assumptions and Terminology

We expect the distributed system under inspection to operate in the omission

fault model, in which messages may - independently - be delayed arbitrarily long,

be lost, and processes may fail by crashing. We assume the system to consist of

at least two processes that communicate via messages and have access to storage

34

Figure 5.2: Simplified representation of the consequent provenance graph for a
successful run of the Async P/B protocol from Figure 5.1 in reverse chronological
order top to bottom. The message-passing events (postfixed @async in Figure 5.1)
are colored turquoise. Consequent predicate post (lines 35–39 in Figure 5.1) is
colored blue. Red-dashed vertices capture network connectivity to the respective
other node. The two red gears hint at the computations that might not have
taken place in a failed run, thus preventing the protocol from establishing the
post predicate.

that is durable across restarts. As input to our strategies, we expect a collection of

provenance graphs from a series of runs of the program. Figure 5.2 represents one

such provenance graph for the consequent of a successful run of the protocol from

Figure 5.1 reduced in detail to show the structure of expected graphs. In case we

identify a reproducible violation of the correctness specification (a bug), it is going

to be the last run which we thus call failed. All others are successful runs produced

under different schedules, message orderings, or faults. A program with at least

one failed run is buggy, otherwise it is correct. We assume to be operating in

concert with an experiment selector that generates these graphs (e.g., integration

35

Figure 5.3: We assume our lineage-driven distributed debugger to be tightly
integrated with an experiment selector providing the provenance graphs that form
the basis of our analyses. A human operator applies the compiled suggestions.

tests). In practice, we imagine this to be a tight loop, such as the layout visualized

in Figure 5.3: the selector identifies a bug, the bug is fed into our strategies where

corrections are generated, and an operator attempts to apply the suggestions.

Repaired programs are resubmitted to the selector until all bugs are resolved.

5.2.2 Correctness Specifications

Any verification solution expects that a system under test be accompanied by a

description of what it means to be correct. We require correctness specifications in

the form of implications, A → C, where antecedent A and consequent C are first-

order logic formulae over the set of relations comprising the system’s distributed

state. Invariants such as “account balance is positive” can be captured in C with

A set to true. C must thus hold in all runs, as we would expect of an invariant.

Many distributed correctness properties, however, are not bare invariants. Due

to the possible faults in distributed systems, there exist runs in which properties

that require communication are never achieved. A reliable broadcast protocol

disseminating a message to a group of nodes will never succeed if all nodes or

36

the network stop functioning. Thus, distributed correctness properties are most

commonly expressed as implications where A holds when the run is not vacuously

correct and C then enforces expected distributed behavior.

Put differently, A is true when a possible good state is achieved and C describes

the state that, given A, must occur. For example, the specification for reliable

broadcast reads: “If a correct process delivers a message (A), then all correct

processes deliver it (C)”. Agreement safety in commit protocols could say: “If

a participant commits (aborts) a transaction (A), then all participants commit

(abort) (C)”. Durable replicated data stores require: “If a write is acknowledged

at the client (A), then it is durably stored on all alive replicas (C)”.

For our strategies, the program under test and its correctness specification are

expressed in the same logic programming language. As part of program state,

records of A (pre in Figure 5.1) and C (post in Figure 5.1) are enriched with

provenance describing how they occurred. Every record in A comes with an

explanation why the run that produced it was not vacuously correct, while every

record in C provides an explanation why the run upheld the property of interest.

5.2.3 Provenance Debugging Framework

The debugging strategies presented here manipulate the set of provenance

graphs P from the runs of the distributed program under inspection. Elements

of P are directed acyclic graphs describing the provenance for A or C of run

i = 1, . . . , n. Members of P are called Provi
A or Provi

C, depending on their role

in the specification. For one successful and one failed run this amounts to P =

{Prov1
A, Prov1

C, Prov2
A, Prov2

C}. In short, P := ⋃n
i=1{Provi

A, Provi
C}.

Independently, the provenance graphs are of little immediate use for dis-

tributed debugging, as we saw in Section 5.1. But as we will see, a variety of

37

simple queries over these graphs helps reveal both root causes of observed bugs

as well as - surprisingly - potential bug fixes. To enable such queries we require a

collection of graph operations, each of which produces a new graph when applied

to elements of P . For intuition, we pun on the set operations intersection (∩),

union (∪), and difference (−). All graph operations work as we expect them to.

A ∩ B produces the graph that only contains vertices and edges that A and B

share. A ∪ B yields the graph with all vertices and edges from A or B or both.

A − B gives us what is left of A when all vertices and edges of B are removed.

Intersection and union seamlessly work for more than two graphs at once.

We need to be able to select specific vertices from the provenance graphs in

P and applications of the graph operations among its members. Thus, we briefly

introduce a number of integral vertex selection functions informally. Function

propx=y(A) returns the subgraph of A for which property x equals y on all ver-

tices. Function normalize(A) yields the reduced and simplified standard form of

provenance graph A, i.e., a more abstract representation of A where run specifics

are hidden, e.g., by collapsing chains of the same event type into one, etc. Function

leaves(A) produces all vertices of A without any outgoing edge. Analogously,

roots(A) returns all vertices without any incoming edge. Considering a subset V

of the vertices of graph A, reachableA(V) yields all vertices in A reachable from

each element in V .

5.2.4 Principal Strategies

We now show how to use our framework to express common debugging strate-

gies that expose causes of distributed bugs and assist developers in writing fixes.

38

(a) Differential Consequent Provenance.

(b) Skeleton Differential Consequent Provenance.

(c) Corrections Generation.

Figure 5.4: Exemplary visualization of our three principal strategies for
provenance-based debugging. Per strategy, equal vertex numbers identify the
same logical event. Red boxes denote the result of operation leaves on a sub-
graph, blue boxes show the outcome of operation reachable. Orange-colored
indices mark that the respective property evaluates to true for that vertex.

Differential Consequent Provenance

Differential provenance [61] aids in root cause analysis by revealing a frontier -

a line distinguishing the point at which the failed run departed from the successful

path - highlighting events that failed to occur. Expressing differential provenance

in our framework is straightforward. By construction, the first run is successful,

i.e., for run 1 it holds that A → C. Let run f be the failed run, i.e., A holds but

C does not at test end. We can now reason about the set of program rules DiffC

that did not execute in the attempt of establishing C in the failed run, by issuing

39

the following query in our framework:

DiffC := leaves(Prov1
C − Provf

C)

We visualize the resulting set of vertices DiffC over abstract provenance graphs

in Figure 5.4a. Changing the program to ensure that the statements in DiffC

always execute is sufficient to repair the bug, but how should the programmer do

so? If the problem is an error of commission, the appropriate fix will often involve

making a change to the program that is near the frontier identified in DiffC - for

example, by repairing an off-by-one error. Differential provenance can help debug

some errors of omission as well. For example, if the bug involved an unhandled

exception, the code that threw the exception is likely to be close to the unexecuted

statements in DiffC, and hence the appropriate repair will be close as well.

Unfortunately, repairs for errors of omission are not always straightforward,

and this approach can be a dead end. Consider again the protocol presented

in Section 5.1. DiffC identifies the rules that failed to fire when messages were

dropped between the primary and backups. Focusing narrowly on this slice of

the program, the obvious fix would appear to be retrying these messages in order

to overcome loss. But for any pattern of retransmission, there is a correspond-

ing pattern of loss, and an intelligent bug finder will find it! The fundamental

flaw of the program is the primary acknowledges the client too soon. Differential

provenance alone leads us away from this bug.

Skeleton Differential Consequent Provenance

When more than one successful run is available, we can take the idea of exten-

sions based on differential provenance one step further. Instead of relying on only

one successful run to determine what comprises success, we use all of them and

40

create a skeleton - essentially, the prototype of a successful run. Let f ≥ 3 denote

the failed run again. We thus have at least two successful runs available for our

query. Let s = f − 1, such that 1, . . . , s refer to the respective successful runs.

Incorporating the idea of a “protocol core extraction”, reduces to the task of inter-

secting the consequent provenance graphs of all successful runs prior to obtaining

their difference set SkelDiffC with the failed run’s consequent provenance:

SkelDiffC := leaves((
s⋂

i=1
normalize(Provi

C)) − Provf
C)

For intuition, we show a simplified computation of the vertex set SkelDiffC

in Figure 5.4b. Oftentimes, protocol runs vary slightly in flow, e.g., in specific

number of message retries due to coping with message loss. By focusing on rules

present in all successful runs, we aim to remove important but secondary protocol

behavior. This helps us direct attention on increasing redundancy of indispensable

yet missing program rules in the failed run. Trying to look beyond specific features

of the individual successful runs, we suggest to introduce redundancy updates that

enable the rules SkelDiffC to fire under more fault settings.

Corrections Generation

The two debugging strategies above provide us with high resolution pointers

into program logic, guiding the programmer’s attention to regions of the program

where it is likely that the bug lies. But as we discussed in Section 5.2.4, for

some classes of omission bugs there simply is no code region that requires repair;

rather, as in the case of asynchronous primary/backup, the protocol has been

insufficiently developed and additional program logic needs to be added.

We have one other tool at our disposal, however: the correctness specifications

themselves. If we reconsider the structure of our correctness specification A → C,

41

we know that when we observed a failed run, A held but C did not. Thus, there

must exist a window in the protocol flow during which an injection of the right

combination of omission faults will leave the protocol no chance to ever establish

C before the test ends. While increasing the number of ways for C to eventually

be established makes the protocol more robust, it only delays the time at which

the bug finder injects the right omission faults that forfeit C once more.

Going back to our protocol from Figure 5.1 that is supposed to provide durable

replication, we see that no matter how often we instruct the primary to send

replicate messages again, dropping all of them or crashing all replicas will still

be successful in preventing C from being established. No matter how many re-

dundancy measures we add, an intelligent bug finder always comes back with at

least one run that violates the specification. We need to switch tactics and make

our protocol correct first, before the increased robustness becomes visible. Most

of the resources for automatically generating, applying, and testing these protocol

corrections are already available. Specifically, what needs to change are the condi-

tions under which we consider A established. We need to make sure all conditions

for establishing C become conditions for establishing A as well. We identify these

rules triggering C and generate updated dependencies for A that precisely include

those that cause C to be true. Put differently, only report a good protocol state

being achieved (A), when we know the consequent state (C) has already been as

well. We obtain the updated dependencies set DepsA by querying:

DepsA := reachableProv1
A

(leaves(propA=true(Prov1
A)))

∪ leaves(propC=true(Prov1
C))

Omitting details of an actual protocol execution, the updated dependencies set

DepsA for A based on exemplary provenance graphs Prov1
A and Prov1

C is shown in

42

Figure 5.4c. Distributed specifications such as durability naturally take a global

view on system state dispersed across the members when verifying A and C. In

case verifying C in a buggy protocol indeed ranges over more than one node, it does

not suffice to simply add the missing triggers for C as dependencies to A, due to

their separate logical locations. Instead, communication schemes are required that

allow all nodes establishing A to reason about remote state on all nodes establish-

ing C. In these situations, DepsA will differ such that leaves(propC=true(Prov1
C))

is replaced with knowledge about the remote states through messages.

Invoking this strategy, the programmer will be presented with a set of rule

suggestions to add and a set of dependencies to adjust, that, if applied appropri-

ately, close the window between establishment of A and C permanently fixing the

bug. While final adjustments have to be made by the programmer, we will see in

Section 5.3 that these appear easy enough for developers inexperienced with the

protocol to devise and insert into the protocol code.

5.3 Evaluation

We validate our debugging strategies using real-world bugs from the TaxDC

collection by Leesatapornwongsa et al. [60]. The collection describes, labels, and

categorizes distributed concurrency bugs, i.e., bugs caused by the non-determinism

of distributed events inherent to distributed systems. Based on bug tracker re-

ports from large-scale distributed systems such as Cassandra, Hadoop MapRe-

duce, HBase, and ZooKeeper, Leesatapornwongsa et al. extract triggering condi-

tions, a succinct description of steps leading to the bug, and official fix if available.

We reviewed 52 of the available 104 TaxDC bugs, chosen arbitrarily after a rudi-

mentary screening, which we classified according to root cause, noting for each

class whether it is correctable or debuggable with our framework. We present the

43

resulting taxonomy in Section 5.3.1 and Table 5.1. We implemented the principal

strategies from Section 5.2.4 in our prototype debugger Nemo [59] and successfully

analyzed and fixed a subset of the bugs from our taxonomy. We present four case

studies to demonstrate effectiveness and limitations of Nemo in Section 5.3.2.

Table 5.1: Taxonomy of 52 distributed concurrency bugs from the TaxDC col-
lection and the asynchronous primary/backup protocol from Figure 5.1. Legend:
✔ = yes, ✘ = no, ❍ = it depends.

Bug Class & Description
Correc-

tions

Assis-

tance
Bugs Canonical Fix

message-message

Two messages

race each other.

✔ ✔ 9

Sending node

checks specification: Add

communication about

progress of local event

before sending message.

T
im

in
g

message-local

A message races a

local event.

✔ ✔ 14

Local node checks

specification: Add message

queue between sender and

node. Wait for message

delivery or computation

completion before

progressing.

local-local

Two local events race

each other.

✔ ✔ 1

Continued on next page

44

Table 5.1 – continued from previous page

Bug Class & Description
Correc-

tions

Assis-

tance
Bugs Canonical Fix

premature success

Consequent races with

end of test.

✔ ✔

Async

P/B

Add communication about

consequent state in system

to nodes enforcing

specification. Expand

success conditions by

positive response.

state transition

State transition in

response to an

event is wrong.

✘ ✔ 11

Fix: Add missing transition

for unexpected event.

Assistance: Differential

provenance points to missing

completion event of

vulnerable state.

Lo
gi

c

config

Misconfiguration.
✘ ✔ 1

Fix: Configure system

correctly.

Assistance: Differential

provenance points to goal that

differs in specific config value.

fallback behavior

Actions in response to

perceived errors

are wrong.

✘ ✘ 5

Fix: Rewrite or add wrong

fallback logic.

Assistance: None.

Continued on next page

45

Table 5.1 – continued from previous page

Bug Class & Description
Correc-

tions

Assis-

tance
Bugs Canonical Fix

bug

Concept or

implementation error.

✘ ❍ 11
Fix: Depends on bug.

Assistance: Depends on bug.

5.3.1 Bug Taxonomy

In Table 5.1, we categorize distributed concurrency bugs into bugs due to

timing issues and bugs due to node-local logic mistakes. These root causes cor-

respond almost precisely with our informal rubric of omission (timing) and com-

mission (logic) errors. Prominent representatives for the first category are race

conditions. We distinguish message-message, message-local, and local-local races,

where message is a data item in network transit and local a node-local compu-

tation. As the TaxDC bugs do not come with a correctness specification of the

form A → C, most races come down to event order on one node. Thus, category

premature success for bugs where A is established too permissively and C fails

to be established until test end due omission faults, currently only holds for our

protocol from Figure 5.1. On the other end of the spectrum, root causes of logic

bugs ultimately amount to node-local logic errors. Bugs of this type continue to

occur even when all omission faults have been incapacitated. We classify further

into bugs in which a protocol stops working correctly due to a wrong or missing

state transition in response to an event, has been run with a wrong configura-

tion, does not have any or the wrong fallback behavior to errors, or features an

implementation bug.

46

Of 52 bugs, 24 are potentially repairable by our corrections generation strat-

egy (Table 5.1, column “Corrections”). These are precisely the bugs in the timing

category, demonstrating the ability of our framework to help fix these errors of

omission. The remaining 28 bugs root in logic mistakes and thus cannot be cor-

rected through generated protocol-level changes. However, debugging 12 of them

will reduce to highly-targeted rule comparisons by assistance of our queries rooted

in differential provenance (Table 5.1, column “Assistance”). Further 11 bugs are

general mistakes and the effectiveness of our methods highly depends on the bug at

hand. Finally, only for bugs with wrong fallback behavior, our strategies provide

no advantage in assistance over conventional debugging methods.

5.3.2 Case Studies

We implemented three timing and three logic bugs from Table 5.1 in Dedalus [66]

and submitted them to Molly [69], the reference implementation of lineage-driven

fault injection [15]. For each, Molly found omission faults violating their correct-

ness specification. We confirmed the effectiveness of our corrections strategy by

successfully fixing the timing bugs—we present how so below. Additionally, we

show how Nemo brings us in close proximity of the root cause when analyzing one

of the logic bugs it cannot automatically repair.

CA-2083 (Message-Message Race). We start with Cassandra bug 2083,

representative of the class message-message races in which protocols behave cor-

rectly when messages are received in expected order, but violate their specification

in the event of a network reordering. In CA-2083, a schema message creating a

new keyspace and a data message carrying data for the new schema race to one

of the nodes. If the data message unexpectedly arrives first, it will get dropped

because of the unknown keyspace. The canonical and official fix is to buffer the

47

data message if it is received first and enforce processing of schema message prior

to delivering the data message. Nemo identifies this race and synthesizes a modifi-

cation of one line of protocol code that results in enforcement of the correct order.

A subsequent Molly-Nemo loop confirms our success. Additionally, Nemo suggests

improving the fault tolerance of some critical network events prone to omissions.

When included, we obtain a correct protocol resistant to severe message loss.

ZK-1270 (Message-Local Race). ZooKeeper bug 1270 is a race not be-

tween messages but a message and a local computation that runs for longer than

expected. After an election, a new leader sends a confirmation message to a fol-

lower and awaits a response, which it can only accept after moving to AWAIT

state. If this computation is delayed (e.g., due to a garbage collection pause), the

leader could receive a response before transitioning, and ignore the reply. When it

eventually moves to AWAIT, it blocks, because it will never receive another mes-

sage. The official fix delays response delivery until the transition completed. Nemo

resolves the race by synthesizing a single line of code enforcing the ordering con-

straint: success(L) :- sent_flag(L), ack(F). Here, adding sent_flag(L) to

the dependencies for leader L to ultimately declare a run a success prevents a run

from prematurely becoming successful in case an acknowledgment is processed

before the leader moved to AWAIT. After repair is confirmed, Nemo suggests

improvements in the form of end-to-end retries of confirmation messages.

MR-2995 (State Transition). In Hadoop MapReduce bug 2995, we face a

local-logic state transition bug. A manager is prone to crash when it receives an

expiration instruction for a resource it is still initializing. No protocol-level change

that Nemo can generate will fix this root cause. Nemo falls back to differential

provenance in this case, identifying the first program statement that fired in the

successful execution but failed to fire in the faulty one: the “completion” message

48

indicating that initialization succeeded. The programmer will need to rewrite this

line of code, to either ignore the expiration message or delay its processing.

Async P/B (Premature Success). We close the circle by returning to our

protocol from Figure 5.1. Due to premature optimizations, a client considers its

payload durable as soon as it has received acknowledgment from the primary,

but before verification of payload presence in all node logs. We reason about

global system state when verifying the specification, which distinguishes Async

P/B from above race conditions. The fix is to ensure the client knows its payload

to be durable before declaring success. Nemo suggests to introduce ack_log to

inform the client about replica state and making receipt of ack_log from all nodes

condition for success. All in all, Nemo proposes to modify four lines of code,

after which a subsequent run confirms our success in eliminating the bug and

indeed making the system durable. Additional fault tolerance analysis suggests

to increase the resilience of rules replicate, request, ack_log, and ack, leading

to a correct and more robust primary/backup replication protocol that resembles

in code what the specification describes as correct.

Via Nemo, we showed strong evidence that the question-and-answer process

of bug identification and repair can be posed as queries over traces of system exe-

cutions, identifying causes of errors of commission. We also demonstrated Nemo’s

surprising ability to use this provenance querying framework to synthesize proto-

col repairs which cause the program to more closely fit its specification in the case

of errors of omission. Nemo operates on an idealized model in which distributed

executions are centrally simulated, record-level provenance of these executions

is automatically collected, and computer readable correctness specifications are

available. In the next chapter, we discuss incident localization for large-scale dis-

tributed systems with shallow or non-existent specifications, coarse-grained trac-

49

ing and logging rather than provenance collection and detail the challenges we

needed to overcome to achieve efficient and effective incident localization.

50

Chapter 6

Troubleshooting: Incident

Localization

In this chapter, we consider troubleshooting in production systems. Many large

production systems are composed of thousands of microservices with instances in

several regions and availability zones. Systems constantly evolve as new function-

ality is developed, bug fixes are pushed out and old services are phased out, to

name a few examples. When a system does not behave correctly for some frac-

tion of users, Site Reliability Engineers (SREs) declare incidents. Incidents are

common but downtime is expensive. Outages of even a few minutes can cost ser-

vice providers hundreds of thousands of dollars in revenue [70, 71]. Additionally,

they incur soft costs in terms of poor user experience. The priority for SREs is

to restore system functionality quickly. Before they can act to mitigate system

unavailability, SREs must first localize the incident. Incident localization is the

process of identifying a location - a component (hardware or software) - where

a mitigating action may be applied. For example, if SREs determine that the

behavior of service instances in a particular data center is problematic, the action

recommended by SREs might be to divert traffic away from it. Other examples of

51

mitigating actions include re-configuring access control or firewall rules, reverting

a code change and restarting components.

Incident localization is difficult in practice for two reasons. First, since dis-

tributed applications are complex and highly connected, SREs need to consider

large volumes of data from varied sources (metrics, logs, events, and traces) gener-

ated by executions before and during the incident to reason about system behavior.

Based on their observations, SREs then attempt to determine a pattern in how

executions fail during an incident. Second, many events in the failing executions

may be different from the successful executions. SREs have to infer the relation-

ships between different events for effective (correct and precise) localization; a

time-consuming process. SREs have access to a suite of tools but may need to use

multiple tools to obtain insights from different data sources. Outputs from one

tool may be modified and used as inputs to a different tool.

Since traces capture events within a user request and how they relate to each

other, the relationships captured in traces are precisely those which SREs currently

infer manually, recommending the use of traces. Combining differential reasoning

with comparing sets of traces helps determine the consistent structural changes

across traces (change pattern) during an incident. Thus, using traces as a data

source addresses both causes of slow incident localization.

The key idea of our approach, Aggregate Comparison of Traces (ACT), is

to find events present in one set of traces but not the other and then use the

structure of individual traces to reason about cause and effect. ACT leverages the

relationships captured between events within traces as opposed to SREs manually

connecting the dots. Thus, we are able to focus SREs attention on a few (ideally

one) events or relationships that they need to investigate further to recommend

an effective mitigating action.

52

We evaluate ACT on datasets from HDFS [72], DeathStarBench [73], and

eBay. In our quantitative experiments, we conduct hundreds of simulations for

three different failure modes and show that ACT is able to identify a mitigation

site that enables effective action in all but a handful of cases as compared with

our baselines that produce irrelevant results in 30-50% of the cases. For SREs

mitigating incidents, the above result implies that ACT identifies exactly where

the mitigation is to be applied. We have integrated ACT with Jaeger [34], an open

source tracing tool, for online trace comparison. ACT opens a line of inquiry into

using groups of traces for incident localization, which, if adopted widely, can

change the way SREs approach incident response. We also contrast ACT with

approaches taken by commercial tools such as Lightstep [35].

The rest of the chapter is organized as follows: In Section 6.1, we first present

details of an incident study which has two main takeaways. First, we provide

evidence to show that incident localization dominates response time. Second, we

show that RPC failures produce the largest impact to system availability. There-

fore, we focus on incidents that arise from RPC failures in our work. With an

example incident, we motivate the use of traces to localize incidents by discussing

relevant approaches from the state of the art and highlighting their shortcomings.

Section 6.2 develops an approach that compares sets of traces and analyzes their

events and relationships to localize incidents. In Section 6.3, we focus on evaluat-

ing ACT vis-a-vis baselines that adapt approaches from prior work to our setting

and finally, we touch upon the details of integrating ACT with Jaeger. We close

with Section 6.4 in which we motivate the need for iterative localization, describe

how we extend ACT to drill down to specifics and present some preliminary results

from applying these on executions of sample open-source applications [51].

53

0 5 10 15 20

API not backward compatible

Misconfiguration

Load & Capacity

Networking

RPC failures

Impact to availability (%)

C
at

eg
or

ie
s

Figure 6.1: Percentage of impact by category - we have represented the top
five of over a dozen different categories that emerged based on available data.
Incidents arising due to breakdown in communication between components at the
application level have the highest impact.

6.1 Background and Motivation

The principal goal of incident mitigation is to minimize impact to users. Un-

derstanding the causes of the incident is usually a secondary goal, often a more

costly (in terms of time and effort) exercise reserved for post-incident reviews.

SREs use aggregate alerts from metrics deviations, logs from services, etc to

build a mental model of the system. These models are often based on tribal

knowledge, typically incomplete and usually outdated [74–76]. We first present

observations from a study of incidents at eBay.

6.1.1 Incident Study

To determine trends in incidents, we studied incident reports of 75+ severe

incidents that occurred over three years (June 2017 - May 2020) at eBay. Severe

incidents correspond to more than 85% of overall impact. Incident impact is

measured in terms of loss of availability. Impact to availability of an incident is

the duration of time that all or some fraction of users were unable to use the

54

system i.e. availability of service. We make the following observations:

Highest impact is from RPC failures between components at the ap-

plication level: Figure 6.1 shows the top five incident categories in order of

decreasing impact. We have not represented incidents arising from vendor issues

since reading incident reports only gives us a partial view of these incidents. RPC

failures between components includes:

Component down: Components can fail for various reasons - a recent change

made to the component, a dormant bug in a code path not used often - triggered

by an increase in load or a change in user options. Component failure by itself is

not an incident but the lack of a fallback mechanism or the critical nature of a

component not being common knowledge can lead to an incident. Incidents corre-

sponding to this category may arise due to component failures or decommissioning

components that are in use.

Component A unable to call component B: A component (A) which was

previously able to make RPC calls to a different component (B) that it depends on

may no longer be able to do so due to link failures, changes in access control lists,

firewall rules, and security fixes. This may further result in additional, unexpected

component interactions.

Buggy failure recovery: When a component fails to respond within the con-

figured timeout or crashes, the calling component may call a different component

or perform a series of actions to recover. Since the recovery path is generally not

exercised often, it may not work as expected resulting in overall request failure.

In such a case, the fallback may be inappropriate or incorrectly set up to recover

from the failure. This is an important failure mode as failures in the recovery

path continue to be reported [77–79] despite various efforts to address them.

55

MitigationLocalization

Incident
detected

Hypothesis
#1

Hypothesis
#2

Hypothesis
#3

Metrics
Recovery

Incident
Resolved

Figure 6.2: Typical incident timeline

About half the incidents were localized incorrectly at least once: Fig-

ure 6.2 shows a simplified timeline from incident detection to resolution. Local-

ization time and mitigation time are the times taken to effectively localize an

incident and apply the mitigating actions that effect recovery respectively. Incor-

rect localizations (Hypothesis#1 and Hypothesis#2) for an incident indicate that

there were one or more mitigation steps that were pursued before the incident was

effectively localized. A mitigating action that does not result in metrics recovery

prolongs poor user experience and increases revenue impact. Prior works [80–82]

indicate that most incidents are reassigned at least once during triage and that

triage time dominates response time [82]. Reassigning incidents results in a longer

time to apply a mitigating action and therefore, slower incident response.

Takeaway: Effective localization of incidents that arise from RPC failures be-

tween application-level components would produce the most significant reduction

in user impact and therefore, we focus on these.

6.1.2 Motivating Example

We describe a real incident that occurred at eBay which serves as our running

example for the remainder of the section. Figure 6.3 depicts the actions taken by

SREs. The mitigation steps took SREs close to 3 hours and was dominated by

time taken to arrive at the correct mitigating action (2.5 hours).

56

Increase in errors
in one data center

Increase in errors
in all data centers

Token fallback service
unreachable, firewall rules

configured incorrectly

Cache empty, token
minting services

unreachable

Metrics Logs

Restart service Reconstruct events in
successful and

unsuccessful executions

After more time

Configure
firewall rules for

access, traffic
starts flowing

through fallback

2.5 hours

3 hours

Figure 6.3: This figure represents how SREs responded to an incident and the
data sources they used (logs and metrics). The mitigation steps took SREs close
to three hours, two and half of which was arriving at the correct mitigating action.

Token
service

Redeem
coupon

Payments

Token
DB

Token
Fallback
Service

Redeem
coupon

Payments

Token
Fallback
Service

Token
service

Payments

Event (Call to Token service)
missing in unsuccessful executions

Event (Call to Token service
fallback) present only in
unsuccessful executions

Event (Call to Payments) present in
successful and unsuccessful

executions

Figure 6.4: This is an idealized picture of graph differencing and contains only
the relevant services. On the left is a partial view of a successful request where
the token service was working as expected. On the right, we have the trace, after
the restart of the payments service which continued to see errors due to incorrect
firewall rules.

SREs first observed an increase in errors (a metric) for the Payments Service

in one data center and immediately declared an incident. Metrics are used to

monitor the overall health of the system. Business metrics such as number of

transactions completed, number of canceled transactions and rate of incoming

57

traffic are tracked in real-time since they are related to revenue. SREs attempted

to mitigate the incident by restarting the service, but errors increased in all the

data centers instead. In this instance, SREs could surmise from the metrics that

something was wrong, but not what or why.

To understand what caused the increase in errors, SREs looked at the appli-

cation logs and noticed that the local cache used for storing access tokens was

empty and the service used for minting the tokens (Token Service) was unreach-

able. SREs found that Payments Service started calling Token Fallback Service

instead of Token Service. However, all calls to Token Fallback Service were also

failing. Further investigation using the logs revealed that the Token Fallback Ser-

vice was inaccessible due to incorrect firewall rules. Once the firewall rules were

corrected, the error rate returned to normal and Payments Service fully recovered.

The breakthrough in our running example came when one of the SREs observed

from the logs that during the incident, requests were attempting to make a call

to a service (Token Fallback Service). No such call was present in pre-incident

execution traces. SREs had to trawl through logs to find the specific events and

event interactions in the unsuccessful executions that contributed to its failure.

These events indicated the presence of additional calls that were not present in

executions before the incident. In this case, SREs needed to not only understand

the absence of calls from the logs but also the presence of additional calls. This

illustrates that effectively localizing incidents usually requires both aggregate (the

presence of errors) and causal information (Payments Service trying to call Token

Fallback Service) - in this instance provided by metrics and logs. SREs had to first

determine which executions to consider based on the failure of requests and then

compare the events and their relationships between successful and unsuccessful

executions. The request path and system model were reconstructed from system

58

logs for this incident. The crucial step in localizing the incident was differencing

the request paths before and during the incident to see what was different about

the request paths.

6.1.3 Limitations of existing approaches

Although prior work localizing incidents in data centers [83, 84] is extensive,

these are orthogonal to localizing incidents at the application-level since appli-

cations are designed to tolerate network failures such as link failures and packet

drops. For example, a service usually has instances in multiple data centers such

that if a network link in one data center goes out, requests will be sent to a

different instance.

We will briefly describe each of the observability signals - metrics, logs, and

traces - and the most relevant approaches that use them as inputs. With our run-

ning example as context, we discuss why they don’t effectively localize incidents.

We also discuss the constraints of differential reasoning when using traces and

how our approach addresses them.

Fa [1] detects and localizes incidents by vectorizing metrics to learn incident

signatures. The localization points to the set of metrics (and underlying com-

ponents) most relevant to the failure. During an incident, multiple metrics are

affected and SREs would need to understand relationships amongst different com-

ponents. Marianil et al. [2] use metrics to learn a baseline model and build out an

undirected graph by correlating pairs of metrics. They further use graph central-

ity measures to identify the most severely affected metrics and thereby, a faulty

service. For our example incident, the Payments Service has the most errors, and

will most likely be identified as the faulty service. This does not give SREs any

actionable insights and is therefore, not useful.

59

More recent approaches such as Grano [4] and Groot [5] assume that relation-

ships amongst components are available either in the form of system architecture

diagrams or global dependency graphs. They build machine learning models to

identify the metrics correlated with a given incident which are then overlaid on the

dependency graph for incident localization. Such follow-the-errors approaches do

not work when multiple incidents co-occur, one or more metrics are not captured

or incident localization involves identifying when a call between two components

did not occur. Our example incident falls into this last category.

Logs capture a machine centric view of the system and provide additional

context, but require sifting through large volumes of data to extract it. Aggarwal

et al. [3] model logs from different components as multiple time series and correlate

errors emitted by various services to localize the incident given a dependency graph

(static topology or architecture diagram). Approaches that reconstruct individual

user requests from logs involve control and data flow analysis [10, 12]. Yet others

use unique identifiers to identify events corresponding to different requests [9]

and custom log parsing to recognize identifiers [11]. Network communication

and temporal order are used as heuristics to infer relationship amongst events.

Causality inference using log analysis is brittle since it depends on the quality of

user logging and is inapplicable either due to practical concerns (running control

and data flow analysis for constantly evolving systems like microservices with

continuously changing topologies is impractical) or because the timescales for

incident localization are very stringent (as systems scale, application logs grow,

increasing analysis time).

Distributed tracing provides a request-level view of the system and is used

for debugging [6, 7, 16], profiling, and monitoring production applications. It has

also been used to address correctness concerns [28], for capacity planning, and

60

Successful execution
(different execution path)

A

N P Q

YX

A

ED

CB

Unsuccessful execution

A

B N

Successful execution
(Missing data)

Result: {B, N, P, Q}

Result: {N}

Legend

Service to be investigated

Dependencies of service to
be investigated

Missing calls

Note: Service to be investigated and its dependencies are missing
from the graph of the unsuccessful execution. Represented for illustration.

Figure 6.5: Limitations of pairwise comparison - the two examples demonstrate
the circumstances when pairwise comparison produces false alarms and can occur
either separately or in combination.

workload modeling [8]. Tracing is increasingly being adopted by industry and

there is a push for standardization [33, 85, 86] as well. A trace captures events

that occur in a given request as well as how they relate to each other i.e causality.

The most general representation of a trace is a directed acyclic graph (DAG)

where nodes and edges correspond to events and their interactions respectively.

Had traces been available, SREs would been able to compare the trace of a

successful execution and that of an unsuccessful execution - which we call pairwise

comparison - to determine the events that differentiate the two. Doing so would

have highlighted the missing and additional events in executions during the inci-

dent and thereby enabled them to take effective action. Figure 6.4 demonstrates

an idealized result of pairwise comparison for our running example. In the un-

successful execution, the call from Payments Service to Token Service service is

missing, but an attempted call from Payments Service to Token Fallback Service

is additional. Since the structure of a trace represents causality of event interac-

tions, we use it to establish cause-and-effect relationships between events in the

result - retaining only the causes.

Prior works that uses trace analysis employ a similar differential approach

between pairs of traces with appropriate user inputs. For eg., ShiViz [6] and

61

Jaeger [34] both support pairwise comparison of user selected traces. Such tools

allow SREs to interactively validate hypotheses but are not suited to automated

incident localization.

Pairwise Comparison: A deep dive

The most important requirement for automated localization using pairwise

comparison is graph selection - selecting a successful and an unsuccessful execu-

tion that exercise the same code path. In large, distributed systems, requests

with identical inputs can often take different paths due to cache effects, dynamic

request routing, traffic shifting across data centers, experimentation, etc. Traces

generated from such requests may have different structures wholly or partially.

Further, the structure of traces can also change with configuration changes in the

application and deployment environment, ongoing code deployments, new feature

deployment and code deprecation. At any given time, several such changes to

request paths exist in production. Comparing pairs of graphs corresponding to

different executions paths will produce incorrect localizations.

Further exacerbating the problem of graph selection is the fact that tracing is

best-effort. That is, for some executions, the trace corresponding to the execution

may be missing some data. Figure 6.5 demonstrates incorrect localizations pro-

duced by comparing executions that exercise different execution paths and when

comparing incomplete traces of similar executions. Therefore, choosing a pair of

graphs to compare based only on their structure is not viable.

Prior work makes simplifying assumptions about the system under considera-

tion to make graph selection viable. Magpie [87] assumes a static system model

and learns a probabilistic model of the system. An unsuccessful execution would

deviate from the model and the difference between two such traces represents the

62

localization. Large distributed systems (open source systems eg., HDFS, HBase

and commercial systems eg., Netflix, AWS) are complex and constantly evolv-

ing, invalidating this assumption. Spectroscope [7] assumes that a small number

of unique execution paths exist in the system compared with the large number

of underlying system traces, an assumption that does not hold for any but the

smallest systems. GMTA [88] makes two assumptions. First, it assumes that the

model is known and traces can be accurately labelled based on the functionality

they exercise. Second, it assumes that for each label, there exists a single canon-

ical graph. The first assumption requires that the labelling be kept up-to-date

with changing models and the second assumption only holds if there exists only

a single execution path for given functionality, a premise that is untrue for large

systems, as discussed at the beginning of the section. In summary, the simplifying

assumptions made do not hold for large distributed systems.

In our work, we sidestep the problem of graph selection by considering sets

of traces rather than selecting a single pair of traces. From these, we derive ag-

gregate insights while preserving useful information for difference based diagnosis.

Lightstep [35] represents the closest industry tool to ACT and addresses some of

the same failure modes. Lightstep also compares traces in aggregate, but focuses

on finding tags or markers in the traces containing errors. However, for failures

in the recovery path, being able to identify that a call was not successful does

not help with determining a mitigating action. In our example, Lightstep would

follow the errors to the failed call from Payments service to Token service. This

only represents one half of the localization and the incident could only be effec-

tively mitigated by SREs understanding that the call to Token Fallback service

also failed in an attempt to recover from the failed call to Token service - i.e.

knowledge of both the missing call and the additional call. Furthermore, success

63

or failure is an end to end property of a request and typically cannot be derived

from a trace. For eg., a service returning an error in a user request does not

necessarily imply a failed request; rather, it may be an indication to re-try it at a

later time.

In Section 6.2, we describe our approach that compares sets of traces from

steady-state operation and during the incident and analyzes their events and in-

teractions to localize incidents.

6.2 Design & Methodology

In our work, we use traces to localize incidents and thereby, speed up incident

response. Localizing an incident highlights the absence (or presence) of event

interactions during an incident that helps identify a location to apply a mitigation.

Pairwise comparison is usually ineffective for localizing incidents since it produces

false alarms, as described in Section 6.1. As we now show, we can precisely localize

incidents by comparing sets of traces and using the structure of traces to separate

effects from their potential causes, retaining only the causes.

We first describe View of a Trace, which enables trace comparison. It is not

possible to directly compare traces since individual traces include details such as

timestamps that are different for every trace and IP addresses that are not nec-

essarily consistent between any two traces. By dropping attributes that are not

consistent across traces, views of traces make traces comparable. For example, to

debug issues when a service is unable to talk to another, retaining service names

is sufficient. If, instead, we would like to debug issues that impact a subset of

service instances, retaining service instance names when generating a view of a

given trace can be helpful. In this work, we only retain component names when

generating views. We denote views by View(T) and refer to elements of a view as

64

(Time:10:11:05)
(Component: A)

(Time:10:11:26)
(Component: C)

(Time:10:11:21)
(Component:B)

Attribute dropped: Time

View(T)
{(Component:A,Component:B),
(Component:A,Component:C)}

Figure 6.6: Simple trace and an example of a view

Inputs
Compute

symmetric
difference

Compute
and apply
threshold

Is the result
set empty?

Determine
reachability

Outputs:
1. Missing

calls
2. Additional

calls

Y: Sample more traces

Y: Settle for lower guarantee

N

Tbefore

Tincident

Figure 6.7: ACT consists of applying three techniques: Symmetric difference,
thresholding and reachability - in that order.

ordered pairs. In Figure 6.6, for example, the ordered pair (Component:A, Com-

ponent:B) in View(T) corresponds to the edge ((Time:10:11:05, Component:A),

(Time:10:11:21, Component:B)) in the trace, T.

6.2.1 Inputs and Outputs

Inputs to ACT consist of two sets of traces - traces drawn during the most

recent steady-state operation of the system (tbefore) and traces drawn during the

incident (tincident). These are sampled based on the incident start time specified by

SREs. We expect the sampled traces to satisfy two constraints. First, the number

of traces sampled in each of the two sets must be large enough that a majority of

events or event interactions, if captured in underlying traces, are present in the

sampled traces. Many large-scale systems generate millions [31] of traces per day,

but a much smaller sample size turns out to be sufficient for localization, as we

will see in Section 6.3.1.

Second, traces are labeled as successful or unsuccessful based on an external

65

success criterion. Examples of external criteria could include credit card charged

in case of buying an item, the item displayed correctly when it is added to the

product catalog, a HTTP status code of 200, an acknowledgement of data writes,

etc. If a trace cannot be assigned a label, it is discarded (less than 0.2% of traces).

Outputs from our system should localize the incident under consideration

rather than return the entire difference between the set of traces before and dur-

ing the incident. SREs can investigate along two axes - a) Why are specific calls

missing during the incident? and/or b) Why are other calls present only during

the incident? Based on what the investigation reveals, an appropriate mitigating

action can be applied.

6.2.2 System Overview

In ACT, we use aggregate information from witnessing a large set of traces and

the causality of event interactions within individual requests to localize incidents.

Figure 6.7 shows the three techniques we use to localize an incident given sets of

traces from before and during the incident.

The symmetric difference of tbefore and tincident is the set of ordered pairs that

are in one of ⋃|tbefore|
i=1 V iew(Tracei) or ⋃|tincident|

j=1 V iew(Tracej) but not both. If

the changes produced by an incident are represented in tincident and at least one

example of the correct interaction is in tbefore, the symmetric difference will contain

the site where the mitigation is to be applied. To obtain a precise result, we employ

thresholding and reachability.

We use thresholding to answer the question: Which ordered pairs in the sym-

metric difference are statistically significant and must be retained? Since tbefore

and tincident are randomly sampled, one or more of the sampled traces may corre-

spond to a code path that is rarely exercised. If such traces occur in one or the

66

other set of traces, some ordered pairs will be part of the symmetric difference

as a result of sampling randomness. The use of thresholding allows us to discard

these. Using a threshold also addresses trace quality issues in individual traces

that arise due to the best-effort nature of tracing.

After computing symmetric difference and applying the threshold, the result

may still contain some superfluous ordered pairs. To understand how this may

occur, assume two ordered pairs (a, b) and (b, c) are in the result. The edges in a

trace represent event interactions. For a given trace, let’s further assume that (a,

b) and (b, c) correspond to edges (e1, e2) and (e2, e3) respectively. Reachability

is the transitive closure of the edge relation of a graph. If we find that (e2, e3)

is reachable from (e1, e2), we can discard the ordered pair (b, c) since its poten-

tial cause (a, b) is in the result. By establishing cause-and-effect relationships

between edges corresponding to ordered pairs and eliminating the ordered pairs

corresponding to effects, we use reachability to whittle down the result set for

effective localization. Failure of a database call or third party vendor issues into

which SREs have no visibility can be localized to a single leaf node or edge. For

these, we expect to see effective localization even without the use of reachability.

The three techniques build on each other - symmetric difference produces the

initial result set while thresholding and reachability prune the result set such that

the incident is effectively localized.

Techniques:

We describe in detail each of the techniques introduced in the previous section.

Symmetric Difference: To compute the symmetric difference, we only con-

sider the successful executions in steady-state operation (unsuccessful requests in

steady state could result from invalid credit card entry, insufficient stock, etc). ts

67

represents successful executions in tbefore and we shorten tincident to tinc here. The

result is the entire set of changes between the two sets of traces. If calls made in

traces of successful executions during the incident are in the symmetric difference,

these could not possibly have been caused by the incident. Therefore, we remove

them from our symmetric difference. Let tincs represent successful executions in

tinc. We obtain the symmetric difference as follows:

Missing Calls (M) =
|ts|⋃
i=1

V iew(ts(i)) −
|tinc|⋃
j=1

V iew(tinc(j))

Additional Calls (A) =
|tinc|⋃
j=1

V iew(tinc(j)) −
|ts|⋃
i=1

V iew(ts(i))

−
|tincs |⋃
k=1

V iew(tincs(k))

D = M
⋃

A

Thresholding: We cannot use a flat threshold to determine the statistically

significant ordered pairs because our threshold value can change not only as a

result of system evolution but also based on the number of traces sampled. We

derive our threshold as a function of frequency of calls in traces and the number

of traces sampled. Frequency statistics can be computed in real time as traces

are generated. Computed statistics can be stored in-memory since their memory

footprint is small (order of a few hundred keys in a hash map).

Threshold, t = N ∗ (1 − elog(0.01)/n)

We obtain t by solving for (1 − p)n < 0.01, where p is the probability that an

ordered pair, c, occurs in at least t traces. The size of the corpus from which

frequency statistics are computed is N and the number of sampled traces is n.

Therefore, p = t
N

. The threshold, t, is such that if a call appears in more than t

68

of N traces, there is a 99% probability that at least one trace containing the call

will be present in a sample of n traces.

Given a threshold, if a call appears in more traces than the threshold and is

unrelated to the incident, it will appear in both sets of traces with high probability

and therefore not appear in the result. On the other hand, if the call is missing as

a result of changes produced by an incident, evidence of the change will be seen

in the sampled traces. Conversely, if the number of traces that a call occurs in is

less than the threshold, it is discarded. SREs can choose a lower probability and

re-compute the threshold for a less stringent guarantee.

Reachability: As discussed in Section 6.2.2, we exploit reachability to achieve

the minimal result set. To do so, we use the structure of individual traces. Given

two ordered pairs and a trace, T, we first determine the possible edges that each

ordered pair can correspond to. An ordered pair o1 can correspond to many possi-

ble edges in a given trace since a view is generated by a lossy transform. Assume

that ordered pairs o1 and o2 correspond to sets of edges represented by s1 and s2

respectively. For example, given the ordered pair (Component:A, Component:B)

and the trace from Figure 6.6, it would be mapped to a set containing the single

edge - {(Time:10:11:05, Component:A), (Time:10:11:21, Component:B)}.

Next, we check if a cause-and-effect relationship exists between an edge in s1

and one in s2. If such a relationship is established, we discard the ordered pair

corresponding to the effect while retaining its potential cause. We have reduced

both the result set and the number of pairs to consider. We repeat this process

for every pair of edges (that correspond to ordered pairs in the result set) in every

trace until either we arrive at a single result or have explored all sampled traces.

Computing reachability is an expensive operation responsible for almost all of

the time taken by ACT and is therefore applied after thresholding to reduce the

69

number of ordered pairs to be considered. The time taken to establish reachability

is O(|r|2 ∗n), where |r| is the number of ordered pairs in the result set and n is the

number of traces sampled. In the worst case, it will be necessary to consider edges

in all sampled traces if none of the calls in the result set are related to others. In

practice, many calls are related and time to establish reachability is much lower

than the worst case bound.

6.2.3 Application of ACT: An example

We now walk through an example of a simulated incident from the eBay dataset

which demonstrates how techniques in ACT apply end to end and and high-

lights trade-offs SREs often need to make when an incident produces changes in

a small number of traces. We simulate interruption in communication between

PaymentService and OrderMgmtService. For users purchasing items, this call is

required to validate the purchase. Interruption results in users being unable to

place orders. Therefore, we want to highlight the missing call from PaymentSer-

vice to OrderMgmtService. Assume that the probabilistic guarantee is 0.99 (if a

call appears in more traces than the threshold, it is in the sampled traces with

99% probability) and tbefore and tincident each contain 2K traces.

ACT computes a set of results, the elements of which are ordered pairs. The

symmetric difference produces a result set of size 21 but after applying threshold-

ing, the result set is empty. This implies that the sampled traces do not contain

evidence of the correct execution, the changes produced by the incident, or both.

SREs can now take two actions:

Reduce the threshold: An SRE may decide to trade-off number of results for

time i.e. it is acceptable if the computed result has some irrelevant elements.

The SRE will now choose a lower probability and re-compute the threshold. In

70

our example, the SRE chooses to drop the probability to 0.75. The result from

symmetric difference contains 21 ordered pairs. The size of the result is now 11

after applying the new threshold. On applying reachability, we obtain a result of

size 2 - the expected result and an additional, irrelevant suggestion.

Sample more traces: An SRE can also decide to trade-off time for number of

results i.e. additional time is acceptable for fewer (ideally zero) irrelevant results.

Since this is a simulated incident, we know that we can obtain the expected result

with high probability by sampling 4K traces in each set. With the resampled

traces, we compute the symmetric difference (result size is 41) and apply thresh-

olding (result size reduced to 3). Applying reachability now yields exactly the

expected result. The choice to trade-off time or number of results is situational -

for example, if trading off number of results for time produces many false positives,

SREs may pivot and sample more traces instead.

6.3 Evaluation

In Section 6.3.1, we discuss how the initial sample size is determined and used.

To evaluate ACT, we simulate incidents based on how we expect traces to change

for each incident category. Section 6.3.2 makes the case for simulating incidents

and we discuss how we mutate traces. Section 6.3.3 describes the baselines we

compare against. Finally, we compare the results of ACT with baseline techniques

employed in prior work. We answer the following questions:

1. How is the initial sample size determined? (Section 6.3.1)

2. How do the results produced by ACT compare with baseline techniques?

How do the individual techniques in ACT impact the results produced?

(Section 6.3.4)

71

3. How does the time to obtain a result compare with baseline techniques?

(Section 6.3.4)

Finally, in Section 6.3.5, we present some highlights of integrating ACT with

Jaeger [34] for online comparison of traces.

6.3.1 Determining the initial sample size

We discuss how we use ACT’s probabilistic guarantees to determine the initial

sample size from underlying traces and frequency statistics. This serves as an

input when sampling tbefore and tincident for localization.

A structural change to a trace consists of ordered pairs that are missing during

an incident which would normally be present in traces during steady state opera-

tion or additional calls that only occur during an incident. From our discussion of

thresholding in Section 6.2.2, we provide a probabilistic guarantee that evidence

of the correct interaction as well as structural changes to traces are represented in

tbefore and tincident respectively if they appear in more traces than the threshold.

We can plot a Cumulative Distribution Function (CDF) of the percentage of

ordered pairs probabilistically guaranteed to be represented for a given number of

sampled traces. Figure 6.8 depicts these for our three datasets. From the CDFs,

we observe that although a very large number of traces would need to be sampled

to identify every possible call (if it were missing), we find that a majority of calls

can be identified with a sample that is orders of magnitude smaller. Accordingly,

we sample 4K (of 20K) traces for DSB, 8K (of 60K) for HDFS and 20K (of 250K+)

for eBay in our experiments.

72

(a) DSB (22K traces) (b) HDFS (60K traces) (c) eBay(250000+ traces)

Figure 6.8: CDF of the number of traces to be sampled to identify any possible
missing edge. The inlaid snippet of the CDF shows that a majority of calls can
be identified with a sample that is orders of magnitude smaller.

0 2 4 6

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount

Number of results

C
D

F

(a) DSB

0 2 4 6

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount

Number of results

C
D

F

(b) HDFS

0 5 10

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount

Number of results
C

D
F

(c) eBay

Figure 6.9: For the cases when NodeCount and EdgeCount produce results,
we plotted a CDF of number of results. ACT, meanwhile, produces exactly the
expected answer for all of these cases.

0 200 400

0.2

0.4

0.6

0.8

1.0

Symm Diff
Symm Diff and
 Thresholding
Symm Diff and
 Reachability

Number of results

C
D

F

(a) DSB

0 50 100 150

0.2

0.4

0.6

0.8

1.0

Symm Diff
Symm Diff and
 Thresholding
Symm Diff and
 Reachability

Number of results

C
D

F

(b) HDFS

0 50 100 150

0.2

0.4

0.6

0.8

1.0

Symm Diff
Symm Diff and
 Thresholding
Symm Diff and
 Reachability

Number of results

C
D

F

(c) eBay

Figure 6.10: CDFs of the number of results returned when we apply one or two
techniques. Since the eBay dataset is noisy, symmetric difference and threshold-
ing performs best, while symmetric difference and reachability generate the best
results for DSB and HDFS. When all three techniques of ACT are applied, the
result obtained is exactly the mitigation site.

73

Table 6.1: This table explains how we simulate the three failure modes we con-
sider. For each, we describe the input, how traces are mutated and the expected
output. We also specify the conditions that need to be satisfied in each case for a
trace to be mutated. All mutated traces represent unsuccessful executions.

Incident
Category

Input Condition
for
mutation

How are traces
mutated?

Expected
Result

Component
down

Randomly
chosen
compo-
nent

Vertex corre-
sponding to
component
is present in
trace

Delete all edges to
vertices
corresponding to
chosen component as
well as the subgraph
beneath each edge

Component
chosen as input

Component
Unreachable

Randomly
chosen
ordered
pair

At least one
edge corre-
sponding to
ordered pair
is present in
trace

Delete all edges
corresponding to the
chosen ordered pair
as well as the
subgraph beneath
each edge

Ordered pair
chosen as input

Buggy
failure
recovery

Randomly
chosen
ordered
pair

At least one
edge corre-
sponding to
ordered pair
is present in
trace

Delete all edges
corresponding to the
chosen ordered pair
as well as the
subgraph beneath
each edge, then add
an edge at each call
site representing an
attempt to recover
from failure

Ordered pair
chosen as input
and additional
ordered pair
attempting
recovery

6.3.2 Experimental Methodology

To conduct a quantitative evaluation of ACT using data from real incidents, we

would have needed to collect traces during steady-state operation and then again

when incidents occur. Although a large number of incidents occur (anecdotally,

three or four every day), we are only interested in those in one of the categories

described. Identifying these and capturing traces while they are still retained

remains a challenge.

From our incident study and observations of traces generated when we inject

74

Table 6.2: ACT computes exactly the expected result for all but a few cases.
In contrast, NodeCount and EdgeCount produce wrong answers for 30-50% of
simulations. Answer = Set of localizations returned, Exact Answer = Answer is
minimal, Superfluous Answer = Answer subsumes expected result, Wrong Answer
= Answer does not contain expected result, No Answer = Answer is the null set.

Number
of simu-
lations

Exact
Answer
(%)

Superfluous
Answer
(%)

Wrong
Answer
(%)

No
Answer
(%)

ACT DSB 602 99.83
(601)

0.17 (1) 0 0

HDFS 401 98.50
(395)

0.25 (1) 1.25 (5) 0

eBay 418 99.76
(417)

0.24 (1) 0 0

Node
Count

DSB 602 52.82
(318)

7.8 (47) 37.21
(224)

2.16 (13)

HDFS 401 21.95
(88)

29.68 (119) 47.63
(191)

0.75 (3)

eBay 418 25.11
(105)

21.77 (91) 48.80
(204)

4.41 (18)

Edge
Count

DSB 602 58.47
(352)

2.66 (16) 36.38
(219)

2.49 (15)

HDFS 401 63.59
(255)

4.49 (18) 31.17
(125)

0.75 (3)

eBay 418 31.81
(133)

16.27 (68) 44.50
(186)

7.42 (31)

faults, we have a good grasp on how we expect the structure of traces to change

for each incident category. Therefore, simulating incidents can serve as a good

proxy. Simulation not only allows us to apply ACT to a wide range of scenarios

but is also useful in testing its limits.

To simulate an incident, we randomly sample two sets of traces which we

designate as tbefore and tincident respectively. For each incident category, Table 6.1

describes inputs, how traces are mutated and expected output. Some fraction of

traces in tincident that satisfy the condition for mutation are mutated to represent

traces that would have been generated during the incident being simulated, while

75

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount
ACT

Time to result(seconds)

C
D

F

(a) DSB

0 50 100 150

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount
ACT

Time to result(seconds)

C
D

F

(b) HDFS

0 200 400 600 800

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount
ACT

Time to result(seconds)

C
D

F

(c) eBay

Figure 6.11: CDFs of time taken to obtain a result. Reachability accounts for
most of the time taken by ACT. Nodecount and Edgecount have highly variable
time to result since trace of every unsuccessful execution needs to be compared
with that of every successful execution and the number of unsuccessful executions
can vary widely.

traces in tbefore remain unmodified. All mutated traces represent unsuccessful

executions. An unsuccessful execution is one for which we evaluate some external

criteria and determine that the user request corresponding to the execution did

not succeed. We choose simulations uniformly at random. tbefore and tincident serve

as inputs to the different techniques.

We use three trace datasets in our evaluation. These consist of a produc-

tion dataset from eBay and two open-source datasets - DeathStar Benchmark

(DSB) [73], a micro-services benchmark and Hadoop Distributed File System

(HDFS) [72] traces. eBay has about 4500-5000 services, the dataset captures user

requests as they purchase items during a week in November 2019. User requests

to start a session and complete a purchase account for nearly two thirds of the

requests; the remaining third is distributed across twenty other request types that

span different system functions. Examples include changing user address and pay-

ment modes as well as updating items or item quantities. The captured requests

record 250+ unique services and databases and 850+ unique calls. Vertices and

edges represent services and calls between services respectively. DSB traces were

generated by deploying the benchmark on a single machine and capturing traces

76

of different API types. HDFS traces were generated by deploying HDFS on a 9-

node cluster and consists of traces obtained by reading and writing files of various

sizes. The DSB and HDFS traces are in X-Trace [29] format and are captured at

a lower level of abstraction where vertices represent execution of lines of code and

edges represent the execution flow.

6.3.3 Baseline techniques

In prior work, graph analysis approaches [7, 89] transform graphs into vectors

(by counting nodes or edges or converting them into strings) and compare pairs

of graphs. The result returned is a pair of ⟨Successful, Unsuccessful⟩ traces

such that they exercise the same execution path and are separated by the short-

est distance. "Shortest" is precisely defined based on the distance metric and

the representation used. NodeCount and EdgeCount represent traces as vectors

containing the counts of components and calls between components respectively

and use L2 distance as the distance metric. Spectroscope [7] linearizes traces to

produce an event string and uses string edit distance as its distance metric.

Since graph selection is not viable, we have adapted the different techniques to

return the best result after comparing all pairs of traces. The inputs are vectors

or string representations of traces in tbefore and tincident. For the resultant pair

of traces, we compute the symmetric difference of the view of traces and apply

reachability. This final step focusses attention on only the relevant results and is

not employed in prior work. We take this step to be able to compare the results

from the baselines with ACT. A single experiment comparing linearized traces

took multiple hours as compared to the few seconds taken by other techniques.

Hence, we ran simulations comparing ACT with NodeCount and EdgeCount only.

77

6.3.4 Results

Result Quality Table 6.2 summarizes the results for the simulations for which

the change produced by the simulation is reflected in the sampled traces. We

conducted hundreds of simulations for each dataset with the number of simula-

tions for each incident category being roughly equivalent. As can be observed,

ACT computes exactly the expected result for all but a few cases. In contrast,

NodeCount and EdgeCount compute irrelevant results for 30-50% of simulations

for which the changes are in the sampled traces.

Additionally, when NodeCount and EdgeCount produce the expected result

(in 2.5% to 30% of the scenarios) depending on the technique and dataset, results

include false positives. From our experiments, EdgeCount produces false positives

in fewer scenarios than NodeCount. Figure 6.9 shows the CDF of the number of

results produced by NodeCount and EdgeCount.

Impact of individual techniques To measure the impact of thresholding and

reachability, we consider simulations for which ACT returns exactly the expected

result, since the effects can be most clearly seen for these simulations. For the

selected simulations, we employ combinations of one or two techniques and re-run

them. Figure 6.10 visualizes the results we obtain. It is immediately apparent

that computing symmetric difference with thresholding produces the best results

for the eBay dataset indicating a noisier dataset than HDFS or DSB. Reachability

plays a bigger role for DSB and HDFS datasets since these have more depth as

compared with eBay dataset, in which graphs are wide and shallow. Across the

board, the three techniques taken together are more powerful than any single pair

of techniques.

Time taken to obtain result Figure 6.11 represents CDFs of time taken when

the most number of traces are sampled for each dataset. Reachability computa-

78

tions account for almost all of the time taken by ACT. Symmetric difference and

thresholding reduce the number of pairs for which reachability computations need

to be performed - the time for which is negligible in comparison to reachability

computation. ACT has a time bound of O(|r|2 ∗ n), which is linear in the number

of sampled traces, as discussed previously. The baseline techniques, however, have

a time bound of O(s*u), where s is the number of successful executions in tbefore

and u is the number of unsuccessful executions in tincident. Since the trace of every

unsuccessful execution is compared with the trace of every successful execution,

the time taken is quadratic.

6.3.5 Integrating with Jaeger: Implementation Details

We have integrated our approach with Jaeger [34] to enable online comparison

of sets of traces. Jaeger is an open source, end-to-end distributed tracing tool that

enables monitoring and troubleshooting complex distributed systems. It currently

provides a feature that allows users to select and compare a pair of traces. The

obvious drawback is that users need to know which traces to compare. We have

extended the UI to compare sets of traces instead. Rather than requiring users to

select traces as input, we accept as input the time since the incident started. This

enables us to split the traces into before and after sets. For the purposes of our

integration, we use HTTP status codes in the traces to mark them as successful or

unsuccessful - a trace with any span returning a non-zero status code is considered

unsuccessful. In general, SREs can use any criteria to label traces as successful or

unsuccessful. With the two sets of traces and their labels as inputs, we extended

Jaeger-UI to implement and visualize ACT.

Summary: ACT combines the use of aggregate and causal information in traces

to effectively localize incidents. ACT identifies exactly the mitigation site in all

79

but a few cases. While witnessing a large number of traces is necessary to derive

aggregate insights from traces, for a majority of incidents that produce structural

changes in traces, the number of traces to be sampled is orders of magnitude

smaller than the underlying traces captured by the system, making it viable for

use in reducing the time to localize and thereby, resolve incidents.

6.4 Iterative Localization

Iterative localization naturally mimics how engineers approach problem di-

agnosis, starting with broad strokes and drilling down to specifics, making it a

very natural extension of the techniques we have developed for localization. Since

traces are a rich data source that can capture a wide range of contextual infor-

mation, we would intuitively expect adding more information to produce better

results. Iterative localization can improve localization in two ways by a) Providing

more context that helps to eliminate some possible actions, thereby streamlining

localization and b) Providing more specificity on where action is to be taken.

A natural question to ask is: Why not localize the incident by including all the

information from the traces in one step? It turns out that including all the infor-

mation in one step can distract from effective localization by producing irrelevant

results, since each field added increases the cardinality of the space. Furthermore,

since trace data can include a lot of context, they can be quite dense. Filtering

traces by the results of prior localization reduces the data that would need to be

processed at each step.

Iterative localization consists of multiple steps, adding more information at

each step to improve the result. Figure 6.12 illustrates the process, which consists

of projection, filtering, and localization. It also presents two examples of outputs

produced after projection to different sets of fields and filtering by prior results.

80

Projection and Filtering Localization

Prior localization
result or empty set

Result

Svc1:
Op1

Svc2:
Op2

Svc3:
Op3

{(Svc1, Svc2),
(Svc1, Svc3)}

Project to service names
No prior results

Project to service and
operation names

Select only tuples
such that service names
of both tuple elements in

{Svc1, Svc2}

{(Svc1:Op1, Svc2:Op2)}

Projection and filtering examples and
corresponding trace transformation

Figure 6.12: Iterative localization cycles through projection, filtering, and lo-
calization. We use ACT for localization, but projection and filtering can produce
different results depending on the choice of fields to project down to and the re-
sults of prior localization. Two such examples are shown here.

Such projection, filtering, and localization can be repeatedly applied to obtain

a solution containing targeted fields effectively. In our work, we first localize

using only service names and subsequently add operation names and status of

calls for more specific localization for the applications we consider. For a different

application, other fields may be more appropriate. The fields chosen for iterative

localization and the order in which they are explored require domain expertise

and impact the results obtained.

We use sample open-source microservice applications [51] that encode failures

previously described as having occurred in various production systems and gather

traces both from steady state operation and after triggering the bug. First, we

show how iterative localization can be used to streamline localization using a

bug in the fallback path as an example. The bug is as follows: When the app-

server attempts to write to db-primary and fails, it then attempts to write to

81

Missing Additional

app-server_HTTP GET

db-primary_/read db-secondary_/read

app-server_HTTP POST

db-primary_/write/urls/<url> db-secondary_/write/urls/<url>

Missing Additional

app-server_HTTP GET

db-primary_/read db-secondary_/read

app-server_HTTP POST

db-primary_/write/urls/<url> db-secondary_/write/urls/<url>

Missing Additional

app-server

db-primary db-secondary

Figure 6.13: Shows the sequence of results produced by iterative localization
for an example bug in the fallback path - when db-primary fails, db-secondary
is invoked, but the call fails because of the lack of write permissions. The result
of subsequent localizations are informed by and improve upon results of prior lo-
calizations. Legend: Dashed lines represent calls. Gray nodes represent a service
or service:operationname that was in a successful execution but not in an unsuc-
cessful execution; blue nodes represent the reverse. Finally, a green dashed line
indicates a successful call while red indicates an unsuccessful call.

db-secondary, which also fails. Requests start failing en-masse and unexpected

behavior is observed. We now present a series of results produced by iterative

localization. As can be seen from the topmost result in Figure 6.13, we first

determine that db-secondary is being called in the unsuccessful executions where

db-primary was invoked in successful executions, so the next step is to compare

calls to db-primary and db-secondary. In subsequent localizations, we observe that

both read and write calls are made to db-primary and db-secondary in successful

82

and unsuccessful executions respectively, but based on the success or failure of

individual calls (green represents success and red represents failure), engineers

would also be able to deduce that the write call for db-secondary is the proximal

cause of failures. Thus, in this instance, the addition of operation names and

status of calls to service names helped streamline localization.

Missing

app-server

requestmapper db-primary

Missing

app-server_HTTP GET

requestmapper_/urls/<url> db-primary_/read

app-server_/urls/<url>

app-server_HTTP POST

Figure 6.14: Shows that even when iterative localization does not streamline
results, it can add specifics that help engineers take action. In this case, the bug
is that the call to requestmapper was critical but not recognized as such and an
RPC failure from app-server to requestmapper caused failure of the request as a
whole. Legend: Dashed lines represent calls. Gray nodes represent a service or
service:operationname that was in a successful execution but not in an unsuccess-
ful execution

Iterative localization can also be used to obtain more specifics on where action

is to be applied. Here, we will use a bug triggered by an RPC failure as an

example. The bug is as follows: The RPC call from app-server to requestmapper

failed and since this call was critical, but not recognized as such, its failure led

to overall failure of the request and this pattern was repeated across requests.

Since the call from app-server to requestmapper failed, the subsequent call from

app-server to db-primary was never made. As we can see from Figure 6.14, based

on the traces, it appears that the failure arises due to one or both missing calls

83

from the app-server service. By adding operation names, we are able to see the

specific operations on the two services that are missing. Services can be associated

with many operations. Therefore, identifying missing calls to specific endpoints is

very useful. In this case, engineers will need to check two calls: (app-server:GET,

requestmapper/urls/<url>) and (app-server:GET,db-primary/read).

We have illustrated by example that iterative localization is useful for stream-

lining results of prior localization as well as adding more specificity to the results

obtained. Our preliminary results are promising and there are several directions

for future work. One is to extend the current work to a large scale setting and

evaluate the quality of results obtained. Another direction is to evaluate the vari-

ous trade-offs in iterative localization - additional time for iteration and improved

efficiency by reducing data processed versus additional traces required to achieve

the same results, for example.

We have shown how having different observability signals from systems can in-

fluence which problems are solved. With Nemo, we explored the limits of our

approach in a perfect information scenario for debugging systems. While most

large systems today do not gather perfect information, many produce distributed

traces, making ACT highly viable. Since collecting and maintaining perfect infor-

mation at scale is challenging and cost prohibitive, building system observability

(traces that are more fine-grained with richer context, for example) that can solve

a variety of problems by varying their level of detail can be extremely powerful.

In iterative localization, we relaxed the constraint that projects down information

in traces to only service or component names. We continue this theme in the next

chapter in which we describe nascent work in identifying instances of common

design patterns based on empirical observations.

84

Chapter 7

Identifying Distributed Systems

Behaviors

It is common practice to build microservices using well-understood design pat-

terns [90–94]. Examples include patterns for caching, fallbacks, and retries. A

fallback, if configured, is invoked after an initial call to a service fails. Similarly,

when the requested data is not found in the cache, a cache miss occurs and an

additional call to the database is made. While patterns for fallbacks or caches are

well-understood, their instantiation for a particular system is typically unknown.

Mining design patterns is an active area of research and has applications in

program comprehension, feature identification, feature extraction, and assessing

software quality. Instantiations of application-level patterns can also be used

for debugging behavioral and performance issues. Recent work explores mining

the architecture of microservice applications based on their Kubernetes deploy-

ments [95] to test if applications adhere to microservice design principles and to

refactor them as necessary.

While most prior work has focused on finding instances of such patterns by

analyzing source code via static and dynamic analysis [96–100], there is a missing

85

piece - finding patterns in source code does not guarantee that the system be-

haves as programmers intend them to. Additionally, engineers may not recognize

instances of design patterns due to the scale and constantly evolving nature of

systems, exacerbating the problem.

To gain confidence that systems behave as expected, we look for instances of

design patterns in observations of executions. In our work, we consider patterns

that arise from communication between participants in distributed executions.

To find such instances of design patterns, we need to reason in aggregate across

many executions. For example, when two services occur in mutually exclusive

executions, we can only identify this pattern by observing pairs of executions.

Additionally, observing many executions allows us to trim false positives. If we

postulate that service X and Y occur in mutually exclusive executions and subse-

quently observe a single execution containing calls to both service X and service Y,

the instance is disqualified and not returned as a result that matches the pattern.

Our key insight is that, after factoring out application-specific details, query-

ing observations of executions allows us to match templates of design patterns

to their instantiations across different applications. Application experts select

and transform fields from traces into sets of tuples that are loaded into database

tables based on a predefined schema. Then, pattern experts write SQL queries

that are run against a database containing trace data from many executions. We

describe our methodology in detail in the next section. We find instances of com-

mon design patterns - caching and fallbacks in sample microservice applications

(HipsterShop [101], Deathstarbench [73], and applications from the Filibuster [51]

corpus). Our preliminary results are promising and warrant further work in this

space. In Section 7.1, we present our methodology with the fallback pattern as

an example and discuss the system requirements that need to be satisfied for

86

(b)

A

B’B

Fallback #1

A

B

A

B’B

Fallback #2

A

C

Cache hit

A

DBC

Cache miss
Caching

(a)

Figure 7.1: (a) represents common design patterns such as fallbacks and caching
effects, where the red and green arrows represent failed and successful calls re-
spectively. The dotted lines represent a service to which a call was attempted, but
the message was dropped or lost in transit. (b) is an example trace taken from a
real production system

our techniques to apply. In Section 7.2, we discuss our results and Section 7.3

highlights the applicability of our methodology to different problem domains.

7.1 Methodology

In our work, we focus on detecting two patterns in distributed execution traces:

fallbacks and caching effects, templates of which are represented in Figure 7.1 (a).

A fallback may be invoked in two main contexts. When a call returns an error in

response to which the caller then makes a call to a different service, which can be

observed by looking at a single execution. In the template, potential fallbacks are

identified by a failed call from service A to service B, followed by a successful call

from service A to some other service, B’, at a later time.

Alternatively, a fallback may be invoked when a call is dropped or lost in

transit and triggers a timeout on the caller, which then makes a call to a different

service. For this type of behavior, we need to look at at least two execution traces

87

to confirm that this effect is indeed a fallback. In this template, the first successful

execution contains a successful call, made from service A to service B. Contrast

this with another successful execution, in which service A attempts to call service

B but fails. Later, service A successfully calls service B’. Either call can occur,

but not both, and it may be the case that neither of them occur.

We are also able to differentiate between cache hits and misses when observing

executions. A cache hit occurs when a service attempts to retrieve data from cache

and the data is present. A cache miss occurs when the data is not present in the

cache, and the service must then retrieve data from the database at a later time.

The basic template for cache miss is similar to fallback in single execution, but

no call failures occur - instead, data is not found so more operations are needed

to retrieve data.

While these patterns are simple, looking for them in practice is difficult, as

distributed traces are often very large. Figure 7.1 (b) is a real (anonymized) trace

from a production system. Since the templates of patterns we would like to find

are small compared with individual traces, matching templates to instances of

their occurrence manually is impractical. Next, we describe our methodology to

automatically find instances of patterns.

Our methodology to discover instances of patterns has two phases: an appli-

cation specific phase to normalize trace data, and a query phase, which returns

pattern instances. In the first phase, an application expert identifies the fields

in the trace which need to be selected, transformed or discarded. Application

experts always select fields such as service names, operation names, and error

codes, but these may be named differently in various applications. Fields corre-

sponding to service instance names, method names, file or line numbers may also

be selected depending on the data recorded in the traces and the pattern whose

88

Inputs: Traces
from many
executions

Select and
transform fields Apply SQL query

Intermediate
data format

Output:
Instances of

pattern

create view fallbacks
 select b.c_from, b.c_to, r.c_to
 from result r, badgraphs b
 where r.graph = b.graph
 and b.c_from = r.c_from
 and b.c_to != r.c_to
 and b.status = ‘fail’;

service:id,
operation:id,
start_time:
 index_of

service: id,
operation:id,
status:
start_time:
 index_of,

Map1
Map2

lambda x: ‘unknown’
if status_code = -1
‘success’ if
status_code = 0
‘fail’
otherwise

Figure 7.2: System workflow showing the steps in our methodology with a run-
ning example. The id in the mappings corresponds to identity, which means that
the fields are retained as-is. index_of indicates that the start time is converted
into a logical time and we have also shown how status code is mapped to one of
three strings.

instantiations we are attempting to discover. A database containing normalized

data corresponding to the set of executions is produced as output.

For example, all applications analyzed in this work utilize Jaeger tracing [34].

We have found that mining patterns in Jaeger traces requires selecting the service

name, operation name, and status code labels, and transforming timestamp labels

to logical time. Transformation of timestamp labels is encoded in the “index_of"

function shown in Figure 7.2 (Map2). Applying this mapping to all traces studied

prepares them for further analysis in the subsequent phases. Application-specific

expertise is required to write mappings for other applications to uncover these

same patterns. We process the transformed trace data and load information about

each event and call in each trace in the corpus into SQL tables. The result is a

normalized data format which allows us to easily execute queries in the next phase.

In the second, query phase, a pattern expert writes queries in SQL to identify

89

the patterns we are interested in from sets of traces such that the same query can

be applied to processed trace data from different applications. For example, the

fallback in a single execution can be identified by a failed call from service A to

B followed by a later successful call from A to B’. A SQL query can identify this

by selecting pairs of events with the following characteristics: exactly one failure

and one success as sibling nodes, in which the failure occurs temporally before the

success. A snippet of this query is shown on the extreme right in Figure 7.2.

To find instantiations of design patterns in traces of executions, we require that

any pair of system executions is differentiated by at most one change, for a given

set of executions. In our setting, a single change translates to failure of a call or

crash of a service instance. This requirement is necessary since different changes

can interact with each other leading to false positives that we cannot disambiguate.

To satisfy this requirement, we are exploring a framework that runs end-to-end

tests repeatedly in a staging environment killing a process, injecting delays or

mocking failures in different runs. Our framework also corrects for false positives

as a result of non-deterministic effects of executions by witnessing traces of many

executions and ordering results by decreasing frequency of their occurrence.

For our analysis, we consider sample microservice applications integrated with

distributed traces - HipsterShop, Deathstarbench and applications in the Fili-

buster corpus. In the next section, we discuss our experimental methodology as

well as preliminary results that identify potential fallbacks and caching effects in

different applications.

7.2 Evaluation

To find instances of fallbacks and caching templates in different applications,

the set up consists of a few steps. First, we configure and run applications so that

90

traces of executions are captured. Secondly, we identify functional tests to run or

APIs to invoke that exercise desired functionality. We run the functional test or

invoke the API at least once to capture traces during normal operation. Finally,

we trigger fallback or caching behavior in applications via injecting crash faults

or mocking errors in responses and run the functional test again, analyzing traces

captured from executions during normal system operation and when different

faults are injected.

Table 7.1: Instances of patterns in different applications

Fallback 1 Fallback 2 Caching
Hipstershop ✓ ✓
Cinema-6 (Filibuster) ✓ ✓
Netflix (Filibuster) ✓ ✓
Expedia (Filibuster) ✓ ✓
Deathstarbench ✓

In our setting, we have configured applications to send traces to Jaeger. As

discussed in the previous section, we select the service name, operation name,

and status code labels from each trace, and transform timestamp labels to logical

time. Keeping these mappings fixed, we write different queries for each template

we want to identify. As can be seen in Table 7.1, we found evidence of the two

fallback patterns in several applications in the Filibuster corpus and were also

able to confirm that the fallbacks we added programmatically to Hipstershop

were discovered by our queries in executions. We also found evidence of caching

effects in Deathstarbench executions captured by crashing instances of different

caches and invoking specific APIs that reveal cache hits and misses.

91

7.3 Discussion

Our work in mining specific, common design patterns from distributed traces

is unique, efficient, and covers a space of distributed design patterns research that

is less explored in previous work. The system behaviors identified in this work

can have a variety of applications, most notably in building domain knowledge,

feature development, and debugging behavioral and performance issues. Some

examples are:

1. If we determine that some service X can serve as a fallback for both Y and Z,

but a fallback has not yet been configured for Z, developers may configure X

as a fallback for Z as well. Alternatively, if Z fails, traffic may be temporarily

redirected to X to keep the system functional.

2. If an increase in cache misses is observed at the same time as a performance

regression, investigating the cache would be a good place to start.

3. Finding examples of anti-patterns can help engineers proactively identify

and fix issues before they cause a failure.

Retries follow a similar template to fallbacks within a single execution, except

both calls are to the same destination, with the earlier call having failed. However,

when querying for this pattern, we found that retries are observed when errors

propagate up the trace graph when a fallback is invoked not by the immediate

caller, but a service higher up. We speculate that retries that occur independently

of fallbacks could represent an anti-pattern, especially if the retry is to the same

service instance as the failed call.

Our first phase requires that application experts select and transform fields

in traces to obtain a common set of labels that can be queried; a manual and

92

tedious process. We posit that we can address this issue by automating the map-

ping process shown in Figure 7.2. These mappings are simple examples of trace

abstraction, in which the size and complexity of traces are reduced by eliminating

low-level details and preserving causal relationships and necessary information for

trace comprehension. Successful usage of trace abstraction would allow our tool

to tolerate variations in traces across applications and discrepancies within traces

due to non-deterministic effects. A trace abstraction-like approach has been used

to mine patterns from traces to account for dynamic program behavior [96]. We

seek to develop a unified approach to trace abstraction in future work.

In this chapter, we have described our techniques to identify instances of design

patterns. We have employed these successfully to identify potential fallbacks and

caching effects in several different applications. As discussed previously, finding

these provides some evidence that the system functions as expected and has a

variety of applications in building domain knowledge, feature development, and

debugging. Future work in this space involves identifying and writing queries for

more such patterns and anti-patterns as well as evaluating our techniques in a

larger setting. Automatically finding mappings in the application-specific phase

to reduce manual work for application experts is a challenging direction of future

work as well. In the next chapter, we conclude by summarizing our findings in

the previous chapters and describing several directions for future work.

93

Chapter 8

Conclusion

In the previous chapters, we have shown how we can understand, improve,

and troubleshoot systems by asking and answering questions of observations of

system executions. Further, we have shown how the choice of data format - data

provenance and distributed traces - dictates the problems that can be solved.

Data provenance represents a perfect information scenario and having access to

provenance graphs allows us to explore the limits of problems that can be solved.

Distributed tracing has seen increased adoption in industry and solutions that use

traces need to address challenges of using observations from real systems.

There are several avenues for future work. Relaxing our assumptions can bring

to the fore challenging problems:

• Input generation: A variety of approaches to input generation and test gen-

eration (KLEE [102], Quickcheck [103]) are available. Since some fault toler-

ance bugs in distributed systems are triggered only by specific interleavings

of inputs and fault events; eg. Zave’s counterexamples to the correctness

invariants for Chord [104], work that co-optimizes the search through faults

and inputs is an interesting direction for future work.

94

• Non deterministic scheduling orders: Verification techniques such as model

checking - particularly the software model checkers capable of verifying real

implementations - are ideally suited for reasoning about bugs triggered by

non-deterministic scheduling orders. Recent work on semantic-aware soft-

ware model checkers (e.g. SAMC [105]) is particularly encouraging. How-

ever, these tools require encoding domain knowledge about any indepen-

dence and symmetry characteristics to dramatically reduce the state space

under consideration. Such a process supports the efficient exploration of

the system execution behaviors dependent upon complex patterns of faults

and orderings. Combining an approach like LDFI [15] that builds models of

domain knowledge with tools such as SAMC would allow us to reason about

failures at the intersection of partial failure and asynchrony.

• Gray failures: In Chapter 6, we troubleshoot bugs that arise from crashes

and message drops. However, gray failures are increasingly common [18,106].

Consider, for example, a call between instances of A and B fails for some

inputs. In this scenario, it will be the case that the call from A to B is

missing in some percentage of traces. Developing techniques to diagnose or

localize gray failures is an important direction of future work.

In the long run, we would like to unify the techniques used for incident lo-

calization and debugging. This requires rich observability - fine grained traces

rich in context would be an example. We can then envision applying the same

techniques to different views of the observations and solve different problems. We

see two obvious sub-problems that need to be addressed to do so. First, in most

of our work, we have projected down to service name and file:line numbers. In

the later chapters, we have relaxed this to include operation names and status of

calls. However, traces can contain an arbitrary number of fields and one direction

95

of future work would be to determine which projections retain useful information

about the causality of event interactions that can be used in solving distributed

systems problems. Second, in Chapter 6, we presented some initial results with

respect to the usefulness of iterative localization. Evaluating this for large scale

systems and combining it with identifying useful projections would be the first

step towards an unified approach to troubleshooting distributed systems.

In Chapter 7, we have highlighted the wide applicability of identifying dis-

tributed systems behaviors and described how we do so via SQL queries. We

observe, however, that system topologies are broadly fixed and industry standard

best practices follow set templates. Furthermore, services and their fallbacks serve

“essentially” the same function in the context they are invoked. While a call to

a cache or the underlying database may differ in performance, they both are ex-

pected to return values that are generally consistent with each other. Recent

work [107,108] has explored the use of word embeddings in the context of graphs.

Since DAGs are the most general representation of traces, natural language pro-

cessing techniques represent a powerful alternative to identifying template instan-

tiations that is worth exploring.

In the introduction, we presented anomaly detection and debugging perfor-

mance failures as examples of problems that could be addressed via querying

system observations. Although some prior work exists in this space - Sifter [109]

performs anomaly detection with distributed traces as inputs to achieve represen-

tative sampling of traces and Zeno [44] has introduced the concept of temporal

provenance to diagnose performance problems - these problems are far from solved

and would benefit from work in this space.

With the ubiquity of distributed systems, the adoption of the public cloud

and the heterogeneity of software solutions, peeking into or modifying system

96

components may be challenging. As a result, asking and answering questions over

unmodified system observations is uniquely suited to solve distributed systems

problems in this setting. In this thesis, we have demonstrated the suitability of this

approach by developing techniques that successfully address three such problems

subject to our constraints - exploring the fault tolerance space, troubleshooting

systems and identifying behavior patterns in distributed systems executions. We

are hopeful that our work will pave the way for research into other problems that

may be solved via querying system observations.

97

Bibliography

[1] Songyun Duan, Shivnath Babu, and Kamesh Munagala. Fa: A system for
automating failure diagnosis. In 2009 IEEE 25th International Conference
on Data Engineering, 2009.

[2] Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui
Xin. Localizing faults in cloud systems. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST), ICST
’18, 2018.

[3] IBM. Fault localization in cloud systems using golden signals. 2021. [Online;
accessed August 2021].

[4] Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Kopru, Gene Zhang, San-
jeev Katariya, and Sami Ben-Romdhane. Grano: Interactive graph-based
root cause analysis for cloud-native distributed data platform. Proc. VLDB
Endow., 12(12), 2019.

[5] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang,
Selcuk Kopru, and Tao Xie. Groot: An event-graph-based approach for root
cause analysis in industrial settings. ASE ’21, 2021.

[6] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. Debug-
ging distributed systems. Commun. ACM, 59(8), 2016.

[7] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, Spencer
Whitman, Michael Stroucken, William Wang, Lianghong Xu, and Gre-
gory R. Ganger. Diagnosing performance changes by comparing request
flows. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI ’11. USENIX Association, 2011.

[8] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
magpie for request extraction and workload modelling. In Proceedings of the
6th Conference on Symposium on Operating Systems Design & Implemen-
tation - Volume 6, OSDI ’04. USENIX Association, 2004.

98

[9] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.
Wenisch. The mystery machine: End-to-end performance analysis of large-
scale internet services. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI ’14. USENIX Associ-
ation, 2014.

[10] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo,
Ding Yuan, and Michael Stumm. Lprof: A non-intrusive request flow pro-
filer for distributed systems. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI ’14. USENIX As-
sociation, 2014.

[11] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi, and Priya
Narasimhan. Mochi: Visual log-analysis based tools for debugging hadoop.
In Proceedings of the 2009 Conference on Hot Topics in Cloud Computing,
HotCloud ’09. USENIX Association, 2009.

[12] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. Sherlog: Error diagnosis by connecting clues from
run-time logs. In Proceedings of the Fifteenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS XV. Association for Computing Machinery, 2010.

[13] Kamala Ramasubramanian, Kathryn Dahlgren, Asha Karim, Sanjana
Maiya, Sarah Borland, Boaz Leskes, and Peter Alvaro. Growing a proto-
col. In Proceedings of the 9th USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’17. USENIX Association, 2017.

[14] The netflix simian army https://medium.com/netflix-techblog/
fit-failure-injection-testing-35d8e2a9bb2, 2014.

[15] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. Lineage-driven fault
injection. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15. Association for Computing
Machinery, 2015.

[16] Gideon Mann, Mark Sandler, Darja Krushevskaja, Sudipto Guha, and Eyal
Even-Dar. Modeling the parallel execution of black-box services. In Pro-
ceedings of the 3rd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud ’11. USENIX Association, 2011.

[17] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S. Gu-
nawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. Pcatch: Automatically
detecting performance cascading bugs in cloud systems. In Proceedings of

99

https://medium.com/netflix-techblog/fit-failure-injection-testing-35d8e2a9bb2
https://medium.com/netflix-techblog/fit-failure-injection-testing-35d8e2a9bb2

the Thirteenth EuroSys Conference, EuroSys ’18. Association for Computing
Machinery, 2018.

[18] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong Zhou, and Yingnong
Dang. Capturing and enhancing in situ system observability for failure
detection. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18. USENIX Association, 2018.

[19] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jor-
dan. Detecting large-scale system problems by mining console logs. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09. Association for Computing Machinery, 2009.

[20] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian.
Fcatch: Automatically detecting time-of-fault bugs in cloud systems. In
Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’18.
Association for Computing Machinery, 2018.

[21] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu,
Haryadi S. Gunawi, and Chen Tian. Dcatch: Automatically detecting dis-
tributed concurrency bugs in cloud systems. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17. Association for Computing
Machinery, 2017.

[22] Liang Luo, Suman Nath, Lenin Ravindranath Sivalingam, Madan Musu-
vathi, and Luis Ceze. Troubleshooting transiently-recurring problems in
production systems with blame-proportional logging. In Proceedings of the
2018 USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’18. USENIX Association, 2018.

[23] Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu, and Peipei Wang. Dscope:
Detecting real-world data corruption hang bugs in cloud server systems.
In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18.
Association for Computing Machinery, 2018.

[24] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Sav-
age. Improving software diagnosability via log enhancement. In Proceedings
of the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI. Association for
Computing Machinery, 2011.

[25] Soila P. Kavulya, Scott Daniels, Kaustubh Joshi, Matti Hiltunen, Rajeev
Gandhi, and Priya Narasimhan. Draco: Statistical diagnosis of chronic

100

problems in large distributed systems. In Proceedings of the 2012 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), DSN ’12, 2012.

[26] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. Non-
intrusive performance profiling for entire software stacks based on the flow
reconstruction principle. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI ’16. USENIX Associ-
ation, 2016.

[27] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: Dy-
namic causal monitoring for distributed systems. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15. Association
for Computing Machinery, 2015.

[28] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
Dapper, a large-scale distributed systems tracing infrastructure. Technical
report, Google, Inc., 2010.

[29] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion
Stoica. X-trace: A pervasive network tracing framework. In Proceedings of
the 4th USENIX Conference on Networked Systems Design & Implementa-
tion, NSDI ’07. USENIX Association, 2007.

[30] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul,
Mehul A. Shah, and Amin Vahdat. Pip: Detecting the unexpected in dis-
tributed systems. In Proceedings of the 3rd Conference on Networked Sys-
tems Design & Implementation - Volume 3, NSDI ’06. USENIX Association,
2006.

[31] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Bren-
dan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An end-to-end performance tracing and analysis system. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17. Association for Computing Machinery, 2017.

[32] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael
Abd-El-Malek, Julio Lopez, and Gregory R. Ganger. Stardust: Tracking
activity in a distributed storage system. In Proceedings of the Joint Inter-
national Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’06/Performance ’06. Association for Computing Machinery,
2006.

101

[33] Open Telemetry. https://opentelemetry.io//. [Online; accessed August
2021].

[34] Jaeger Tracing. https://www.jaegertracing.io/. [Online; accessed Au-
gust 2021].

[35] Lightstep. https://www.lightstep.com/. [Online; accessed August 2021].

[36] NewRelic. https://newrelic.com/. [Online; accessed August 2021].

[37] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and
Yun Mao. Efficient querying and maintenance of network provenance at
internet-scale. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’10. Association for Computing
Machinery, 2010.

[38] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data
provenance. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’10. Association for Computing
Machinery, 2010.

[39] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semir-
ings. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’07. Association for
Computing Machinery, 2007.

[40] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo
Seltzer. Provenance-aware storage systems. In Proceedings of the An-
nual Conference on USENIX ’06 Annual Technical Conference, ATEC ’06.
USENIX Association, 2006.

[41] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A
characterization of data provenance. In Proceedings of the 8th International
Conference on Database Theory, ICDT ’01. Springer-Verlag, 2001.

[42] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage
of view data in a warehousing environment. ACM Trans. Database Syst.,
25(2), 2000.

[43] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. Differential provenance: Better network diagnostics with reference
events. In Proceedings of the 14th ACM Workshop on Hot Topics in Net-
works, HotNets-XIV. Association for Computing Machinery, 2015.

102

https://opentelemetry.io//
https://www.jaegertracing.io/
https://www.lightstep.com/
https://newrelic.com/

[44] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno: Diagnosing per-
formance problems with temporal provenance. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation,
NSDI ’19. USENIX Association, 2019.

[45] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. Automated bug removal for software-defined networks. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI ’17. USENIX Association, 2017.

[46] Michael Whittaker, Cristina Teodoropol, Peter Alvaro, and Joseph M.
Hellerstein. Debugging distributed systems with why-across-time prove-
nance. In Proceedings of the ACM Symposium on Cloud Computing, SoCC
’18. Association for Computing Machinery, 2018.

[47] Lennart Oldenburg, Xiangfeng Zhu, Kamala Ramasubramanian, and Peter
Alvaro. Fixed it for you: Protocol repair using lineage graphs. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research, Asilo-
mar, CA, USA, January 13-16, 2019, Online Proceedings, CIDR ’19, 2019.

[48] Kamala Ramasubramanian, Ashutosh Raina, Jonathan Mace, and Peter
Alvaro. Act now: Aggregate comparison of traces for incident localization,
2022.

[49] Netflix. Chaos Monkey. https://netflix.github.io/chaosmonkey/. [On-
line; accessed August 2021].

[50] Gremlin. https://www.gremlin.com/. [Online; accessed May 2022].

[51] Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather Miller,
and Rohan Padhye. Service-level fault injection testing. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC ’21. Association for
Computing Machinery, 2021.

[52] Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel Bittman, and Peter
Alvaro. 3milebeach: A tracer with teeth. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21. Association for Computing Machinery,
2021.

[53] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2), 1998.

[54] Diego Ongaro and John Ousterhout. In search of an understandable consen-
sus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC ’14. USENIX Association,
2014.

103

https://netflix.github.io/chaosmonkey/
https://www.gremlin.com/

[55] Wei Lin, Mao Yang, Lintao Zhang, and Lidong Zhou. PacificA: Replication
in Log-Based Distributed Storage Systems. Technical report, 2008.

[56] Robbert van Renesse and Fred B. Schneider. Chain replication for support-
ing high throughput and availability. In Proceedings of the 6th Conference
on Symposium on Operating Systems Design & Implementation - Volume 6,
OSDI ’04. USENIX Association, 2004.

[57] Sape Mullender, editor. Distributed Systems. Addison-Wesley, second edi-
tion, 1993.

[58] Karthekeyan Chandrasekaran, Richard Karp, Erick Moreno-Centeno, and
Santosh Vempala. Algorithms for implicit hitting set problems. In Pro-
ceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11. Society for Industrial and Applied Mathematics,
2011.

[59] Nemo. https://github.com/numbleroot/nemo. [Online; accessed August
2021].

[60] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S.
Gunawi. Taxdc: A taxonomy of non-deterministic concurrency bugs in data-
center distributed systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’16. Association for Computing Machinery, 2016.

[61] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. The good, the bad, and the differences: Better network diagnostics
with differential provenance. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16. Association for Computing Machinery, 2016.

[62] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. Frappuccino: Fault-detection through runtime analysis of prove-
nance. In Proceedings of the 9th USENIX Conference on Hot Topics in
Cloud Computing, HotCloud ’17. USENIX Association, 2017.

[63] Ang Chen, Yang Wu, Andreas Haeberlen, Boon Thau Loo, and Wenchao
Zhou. Data provenance at internet scale: Architecture, experiences, and the
road ahead. CIDR ’17, 2017.

[64] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. Diagnosing missing events in distributed systems with
negative provenance. In Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14. Association for Computing Machinery, 2014.

104

https://github.com/numbleroot/nemo

[65] Peter A. Alsberg and John D. Day. A principle for resilient sharing of
distributed resources. In Proceedings of the 2nd International Conference
on Software Engineering, ICSE ’76. IEEE Computer Society Press, 1976.

[66] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell Sears. Dedalus: Datalog in time and space. In
Proceedings of the First International Conference on Datalog Reloaded, Dat-
alog ’10. Springer-Verlag, 2010.

[67] JD Ullman. Principles of Database and Knowledge-Base Systems, volume
II. WH Freeman, 1990.

[68] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and
Ion Stoica. Declarative networking: Language, execution and optimiza-
tion. In Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’06. Association for Computing Machin-
ery, 2006.

[69] Molly. https://github.com/palvaro/molly. [Online; accessed August
2021].

[70] Amazon goes down, loses $66240 per minute.
https://www.forbes.com/sites/kellyclay/2013/08/19/
amazon-com-goes-down-loses-66240-per-minute/?sh=298ad330495c,
2013. [Online; accessed August 2021].

[71] 3 minute outage costs Google $545000 in rev-
enue. https://venturebeat.com/2013/08/16/
3-minute-outage-costs-google-545000-in-revenue/, 2013. [On-
line; accessed August 2021].

[72] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), MSST ’10.
IEEE Computer Society, 2010.

[73] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson,
Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa,
Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou. An open-
source benchmark suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings of the Twenty-Fourth

105

https://github.com/palvaro/molly
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/?sh=298ad330495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/?sh=298ad330495c
https://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
https://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/

International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19. Association for Computing
Machinery, 2019.

[74] Marisa R. Grayson. Cognitive work of hypothesis exploration during
anomaly response. Queue, 17(6), 2020.

[75] J. Paul Reed. Beyond the fix-it treadmill. Queue, 17(6), 2020.

[76] Richard I. Cook. Above the line, below the line. Queue, 17(6), 2020.

[77] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. What bugs
cause production cloud incidents? In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’19. Association for Computing Ma-
chinery, 2019.

[78] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono,
Anang D. Satria, Jeffry Adityatama, and Kurnia J. Eliazar. Why does
the cloud stop computing? lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud Computing, SoCC
’16. Association for Computing Machinery, 2016.

[79] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Lak-
sono, Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. What
bugs live in the cloud? a study of 3000+ issues in cloud systems. In Proceed-
ings of the ACM Symposium on Cloud Computing, SOCC ’14. Association
for Computing Machinery, 2014.

[80] Yaohui Wang, Guozheng Li, Zijian Wang, Yu Kang, Yangfan Zhou, Hongyu
Zhang, Feng Gao, Jeffrey Sun, Li Yang, Pochian Lee, Zhangwei Xu,
Pu Zhao, Bo Qiao, Liqun Li, Xu Zhang, and Qingwei Lin. Fast outage
analysis of large-scale production clouds with service correlation mining. In
Proceedings of the 43rd International Conference on Software Engineering,
ICSE ’21. IEEE Press, 2021.

[81] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao,
Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. An empiri-
cal investigation of incident triage for online service systems. In Proceedings
of the 41st International Conference on Software Engineering: Software En-
gineering in Practice, ICSE-SEIP ’19. IEEE Press, 2019.

[82] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. Continuous inci-
dent triage for large-scale online service systems. In Proceedings of the 34th

106

IEEE/ACM International Conference on Automated Software Engineering,
ASE ’19. IEEE Press, 2019.

[83] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Liu, Jitu
Padhye, Boon Thau Loo, and Geoff Outhred. 007: Democratically finding
the cause of packet drops. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation, NSDI ’18. USENIX As-
sociation, 2018.

[84] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. Passive
realtime datacenter fault detection and localization. In Proceedings of the
14th USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI ’17. USENIX Association, 2017.

[85] OpenTracing. https://opentracing.io/. [Online; accessed August 2021].

[86] OpenCensus. https://opencensus.io/. [Online; accessed August 2021].

[87] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan.
Magpie: Online modelling and performance-aware systems. In Proceedings
of the 9th Conference on Hot Topics in Operating Systems - Volume 9,
HOTOS ’03. USENIX Association, 2003.

[88] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan
Ding, Tao Xie, and Liangfei Su. Graph-based trace analysis for microservice
architecture understanding and problem diagnosis. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE ’20.
Association for Computing Machinery, 2020.

[89] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric
Brewer. Pinpoint: Problem determination in large, dynamic internet ser-
vices. In Proceedings of the 2002 International Conference on Dependable
Systems and Networks, DSN ’02. IEEE Computer Society, 2002.

[90] Chris Richardson. Microservice Patterns. With Examples in Java. Manning,
Shelter Island, NY, 2019.

[91] Cloud design patterns. https://docs.microsoft.com/en-us/azure/
architecture/patterns/. [Online; access May 2022].

[92] Guilherme Vale, Filipe Figueiredo Correia, Eduardo Martins Guerra, Tha-
tiane de Oliveira Rosa, Jonas Fritzsch, and Justus Bogner. Designing mi-
croservice systems using patterns: An empirical study on quality trade-offs.
2022.

107

https://opentracing.io/
https://opencensus.io/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/

[93] Felipe Osses, Gastón Márquez, and Hernán Astudillo. Exploration of aca-
demic and industrial evidence about architectural tactics and patterns in
microservices. In Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings, ICSE ’18. Association for Com-
puting Machinery, 2018.

[94] Gastón Márquez, Mónica M. Villegas, and Hernán Astudillo. A pattern
language for scalable microservices-based systems. In Proceedings of the
12th European Conference on Software Architecture: Companion Proceed-
ings, ECSA ’18. Association for Computing Machinery, 2018.

[95] Jacopo Soldani, Giuseppe Muntoni, Davide Neri, and Antonio Brogi. The
µtosca toolchain: Mining, analyzing, and refactoring microservice-based ar-
chitectures. Software: Practice and Experience, 51, 2021.

[96] Chun-Tung Li, Jiannong Cao, Chao Ma, Jiaxing Shen, and Ka Ho Wong.
An agnostic and efficient approach to identifying features from execution
traces. Knowledge-Based Systems, 2022.

[97] B. Bafandeh Mayvan, A. Rasoolzadegan, and Z. Ghavidel Yazdi. The state
of the art on design patterns. J. Syst. Softw., 125(C), 2017.

[98] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Inferring hierar-
chical motifs from execution traces. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18. Association for Computing
Machinery, 2018.

[99] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and Welf Löwe. Automatic
design pattern detection. In Proceedings of the 11th IEEE International
Workshop on Program Comprehension, IWPC ’03. IEEE Computer Society,
2003.

[100] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi.
Detecting the behavior of design patterns through model checking and dy-
namic analysis. ACM Trans. Softw. Eng. Methodol., 26(4), 2018.

[101] OpenCensus. Hipster Shop: Cloud-Native Microservices
Demo Application. https://github.com/census-ecosystem/
opencensus-microservices-demo.

[102] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’08. USENIX Association, 2008.

108

https://github.com/census-ecosystem/opencensus-microservices-demo
https://github.com/census-ecosystem/opencensus-microservices-demo

[103] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’00. Association
for Computing Machinery, 2000.

[104] Pamela Zave. Using lightweight modeling to understand chord. SIGCOMM
Comput. Commun. Rev., 42(2), 2012.

[105] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Luk-
man, and Haryadi S. Gunawi. Samc: Semantic-aware model checking for fast
discovery of deep bugs in cloud systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI ’14.
USENIX Association, 2014.

[106] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swami-
nathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematol-
lah Bidokhti, Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin Harms,
Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro,
H. Birali Runesha, Mingzhe Hao, and Huaicheng Li. Fail-slow at scale:
Evidence of hardware performance faults in large production systems. In
Proceedings of the 16th USENIX Conference on File and Storage Technolo-
gies, FAST ’18. USENIX Association, 2018.

[107] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan,
Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning dis-
tributed representations of graphs. 2017.

[108] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. 2016.

[109] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan
Mace. Sifter: Scalable sampling for distributed traces, without feature engi-
neering. In Proceedings of the ACM Symposium on Cloud Computing, SoCC
’19. Association for Computing Machinery, 2019.

109

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Outline

	Background
	Assumptions
	Requirements
	Understanding Fault tolerance behavior
	Troubleshooting distributed systems
	Identifying distributed systems behaviors

	Understanding Fault Tolerance Under Protocol Evolution
	Background and Motivation
	Methodology and Results
	Catching Bugs Early
	Dormant bugs
	Optimizations

	Understanding Fault Tolerance in Production Systems
	Methodology
	Proof of equivalence

	Evaluation

	Troubleshooting: Debugging
	Background and Motivation
	Methodology
	Assumptions and Terminology
	Correctness Specifications
	Provenance Debugging Framework
	Principal Strategies

	Evaluation
	Bug Taxonomy
	Case Studies

	Troubleshooting: Incident Localization
	Background and Motivation
	Incident Study
	Motivating Example
	Limitations of existing approaches

	Design & Methodology
	Inputs and Outputs
	System Overview
	Application of ACT: An example

	Evaluation
	Determining the initial sample size
	Experimental Methodology
	Baseline techniques
	Results
	Integrating with Jaeger: Implementation Details

	Iterative Localization

	Identifying Distributed Systems Behaviors
	Methodology
	Evaluation
	Discussion

	Conclusion
	Bibliography

