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ABSTRACT
Building microservices based on design patterns is common
practice. Due to the scale and dynamic nature of these appli-
cations, engineers usually only have an incomplete mental
model of the system. We have developed a methodology that
identify instances of well known patterns such as caching or
fallbacks by analyzing traces of executions. This is in contrast
with most prior work that analyzes source code to mine de-
sign patterns. Our preliminary results identifying instances
of patterns of interest across several different applications
is promising and we discuss the different directions we can
explore in this space.
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• Software and its engineering→ Cloud computing; •
Computer systems organization → Redundancy.
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1 INTRODUCTION
It is common practice to build microservices using well-
understood design patterns [6, 11, 14, 15, 18]. Some exam-
ples include patterns for caching, fallbacks, and retries. A
fallback, if configured, is invoked after an initial call to a
service fails. Similarly, when the requested data is not found
in the cache, a cache miss occurs and an additional call to the
database is made. While patterns for fallbacks or caches are
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well-understood, their instantiation for a particular system
is typically unknown.
Mining design patterns is an active area of research and

has applications in program comprehension, feature identi-
fication, feature extraction, and assessing software quality.
Instantiations of application-level patterns can also be used
for debugging behavioral and performance issues. Recent
work explores mining the architecture of microservice appli-
cations based on their Kubernetes deployments [16] to test
if applications adhere to microservice design principles and
refactor them as necessary.
While most prior work has focused on finding instances

of such patterns by analyzing source code via static and dy-
namic analysis [1, 3, 8–10], there is a missing piece - finding
patterns in source code does not guarantee that the system
behaves as programmers intend them to. Additionally, engi-
neers may not recognize instances of design patterns due to
the scale and constantly evolving nature of systems, exacer-
bating the problem.
To gain confidence that systems behave as expected, we

look for instances of design patterns in observations of exe-
cutions. In our work, we consider patterns that arise from
communication between participants in distributed execu-
tions. To find such instances of design patterns, we need to
reason in aggregate across many executions. For example,
only by observing pairs of executions can we establish that
two services occur in mutually exclusive executions. Addi-
tionally, observing many executions allows us to trim false
positives. If we postulate that service X and Y occur in mutu-
ally exclusive executions and subsequently observe a single
execution containing calls to both service X and service Y,
the instance is disqualified and not returned as a result that
matches the pattern.
Our key insight is that querying observations of execu-

tions allows us to match templates of design patterns to
their instantiations across different applications. We do so
by factoring out application-specific details first following
which we query the data for instances of design patterns.
Application experts select and transform fields from traces
into sets of tuples that are loaded into database tables based
on a predefined schema. Then, pattern experts write SQL
queries that are run against a database containing trace data
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from many executions. We describe our methodology in
detail in the next section. We find instances of common de-
sign patterns - caching and fallbacks in sample microservice
applications (HipsterShop [13], Deathstarbench [7], and ap-
plications from the Filibuster [12] corpus). Our preliminary
results are promising and warrant further work in this space.
In Section 2, we present our methodology with the fallback
pattern as an example and discuss the system requirements
that need to be satisfied for our techniques to apply. In Sec-
tion 3, we discuss our results and in Section 4, we touch
upon the most relevant related work. Section 5 highlights
the applicability of our methodology to different problem
domains and presents some examples.

2 METHODOLOGY
In our work, we focus on detecting two patterns in dis-
tributed execution traces: fallbacks and caching effects, tem-
plates of which are represented in Figure 1 (a). As can be
seen, a fallback may be invoked in two main contexts. A
fallback may be observed in a single execution when a call
returns an error in response to which the caller then makes a
call to a different service. In the template, potential fallbacks
are identified by a failed call from service A to service B,
followed by a successful call from service A to some other
service, B’, at a later time.
Alternatively, a fallback may be invoked when a call is

dropped or lost in transit and triggers a timeout on the caller,
which then makes a call to a different service. For this type
of behavior, we need to look at at least two execution traces
to confirm that this effect is indeed a fallback. In this tem-
plate, the first successful execution contains a successful call,
made from service A to service B. Contrast this with another
successful execution, in which service A attempts to call
service B but fails. Later, service A successfully calls service
B’. Either call can occur, but not both, and it may be the case
that neither of them occur.
We also are able to differentiate between cache hits and

misses when observing executions. A cache hit occurs when
a service attempts to retrieve data from cache and the data is
present. A cache miss occurs when the data is not present in
the cache, and the service must then retrieve data from the
database at a later time. The basic template for cache miss
is similar to fallback in single execution, but no call failures
occur - instead, data is not found so more operations are
needed to retrieve data.

While these patterns are simple, looking for them in prac-
tice is difficult, as distributed traces are often very large.
Figure 1 (b) is a real (anonymized) trace from a production
system. Since the templates of patterns we would like to find

are small compared with individual traces, matching tem-
plates to instances of their occurrence manually is imprac-
tical. Next, we describe our methodology to automatically
find instances of patterns.
Our methodology to discover patterns has two phases:

an application specific phase to normalize trace data, and
a query phase, which returns pattern instances. In the first
phase, an application expert identifies the fields in the trace
which need to be selected, transformed or discarded. Appli-
cation experts always select fields such as service names,
operation names, and error codes, but these may be named
differently in various applications. Fields corresponding to
service instance names, method names, file or line numbers
may also be selected depending on the data recorded in the
traces. A database containing normalized data corresponding
to the set of executions is produced as output.

For example, all applications analyzed in this work utilize
Jaeger tracing [2]. We have found that mining patterns in
Jaeger traces requires selecting the service name, operation
name, and status code labels, and transforming timestamp
labels to logical time. Transformation of timestamp labels is
encoded in the “index_of" function shown in Figure 2 (Map2)
and is a mapping to the set of natural numbers which are
monotonically increasing and represent logical time. Apply-
ing this mapping to all traces studied prepares them for fur-
ther analysis in the subsequent phases. Application-specific
expertise is required to write mappings for other tracing
applications that uncovers these same patterns. We process
the transformed trace data and load information about each
event and call in each trace in the corpus into SQL tables.
The result is a normalized data format which allows us to
easily execute queries in the next phase.

In the second, query phase, a pattern expert writes queries
in SQL to identify the patterns we are interested in from
sets of traces such that the same query can be applied to
processed trace data from different applications. For example,
the fallback in a single execution can be identified by a failed
call from service A to B followed by a later successful call
from A to B’. A SQL query can identify this by selecting
pairs of events with the following characteristics: exactly
one failure and one success as sibling nodes, in which the
failure occurs temporally before the success. A snippet of
this query is shown on the extreme right in Figure 2.
To find instantiations of design patterns in traces of ex-

ecutions, we require that any pair of system executions is
differentiated by at most one change, for a given set of exe-
cutions. In our setting, a single change translates to failure
of a call or crash of a service instance. This requirement
is necessary since different changes can interact with each
other leading to false positives that we cannot disambiguate.
To satisfy this requirement, we are exploring a framework
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Figure 1: (a) represents common design patterns such as fallbacks and caching effects, where the red and green
arrows represent failed and successful calls respectively. The dotted lines represent a service to which a call was
attempted, but the message was dropped or lost in transit. (b) We demonstrate instances of fallback behavior in
Netflix, as encoded by the Filibuster corpus and cache effects in Deathstarbench. (c) is an example trace taken
from a real production system

that runs end-to-end tests repeatedly in a staging environ-
ment killing a process, injecting delays or mocking failures
in different runs. Our framework also corrects for false posi-
tives as a result of non-deterministic effects of executions by
witnessing traces of many executions and ordering results
by decreasing frequency of their occurrence.
For our analysis, we consider sample microservice ap-

plications integrated with distributed traces - HipsterShop,
Deathstarbench and applications in the Filibuster corpus.
In the next section, we discuss our experimental methodol-
ogy and preliminary results finding potential fallbacks and
caching effects in different applications.

3 RESULTS
To find instances of fallbacks and caching templates in differ-
ent applications, the set up consists of a few steps. First, we
configure and run applications so that traces of executions
are captured. Secondly, we identify functional tests to run
or APIs to invoke that exercise desired functionality. We
run the functional test or invoke the API at least once to
capture traces during normal operation. Finally, we trigger
fallback or caching behavior in applications via injecting
crash faults or mocking errors in responses and run the func-
tional test again, analyzing traces captured from executions
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Output: 
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pattern

create view fallbacks
 select b.c_from, b.c_to, r.c_to
  from result r, badgraphs b 
   where r.graph = b.graph
   and b.c_from = r.c_from
   and b.c_to != r.c_to
   and b.status = ‘fail’; 

service:id,
operation:id,
start_time:
  index_of

service: id,
operation:id,
status:
start_time:
  index_of,Map1

Map2

lambda x: ‘unknown’ 
if status_code = -1
‘success’ if 
status_code = 0
‘fail’  
otherwise

Figure 2: System workflow showing the steps in our methodology with a running example. The id in the mappings
corresponds to identity, which means that the fields are retained as-is. index_of indicates that the start time is
converted into a logical time and we have also shown how status code is mapped to one of three strings.

during normal system operation and when different faults
are injected.

Table 1: Instances of patterns in different applications

Fallback
pattern
# 1

Fallback
pattern
# 2

Caching

Hipstershop ✓ ✓
Cinema-6 (Filibuster) ✓ ✓
Netflix (Filibuster) ✓ ✓
Expedia (Filibuster) ✓ ✓
Deathstarbench ✓

In our setting, we have configured applications to send
traces to Jaeger. As discussed in the previous section, we
select the service name, operation name, and status code
labels from each trace, and transform timestamp labels to
logical time. Keeping thesemappings fixed, wewrite different
queries for each template we want to identify. As can be seen
in Table 1, we found evidence of the two fallback patterns in
several applications in the Filibuster corpus and were also
able to confirm that the fallbacks we added programmatically
to Hipstershop were discovered by our queries in executions.
We also found evidence of caching effects in Deathstarbench
executions captured by crashing instances of different caches
and invoking specific APIs that reveal cache hits and misses.

4 RELATEDWORK
Mining design patterns is an active area of research [3]. Most
prior work analyzes source code to find patterns that have
uses in program comprehension, feature identification, and
feature extraction[citation]. While prior work attempts to
find design patterns in source code by building and ana-
lyzing the abstract syntax tree (AST) corresponding to pro-
grams [8, 17], we attempt to find design patterns that demon-
strate system function for microservice applications from
execution structure. Many approaches use static and dy-
namic analysis [1, 3, 8–10] of source code and graph mining
approaches, the latter of which are most relevant to our
work.

Graph mining approaches [4, 5, 17] attempt to find isomor-
phic subgraphs to identify design patterns or anti-patterns
in programs. Most of these approaches attempt to perform
graph computations, which are computationally expensive,
in contrast to our approach of formulating SQL queries with
data from normalized traces as input. Additionally, these
approaches attempt to find all recurring patterns, leaving
interpretation to domain experts, while our approach is tar-
geted to specific, well-understood patterns.
Recent work has also considered mining architectures

based on deployments [16] to automatically infer architec-
tures and find possible violations of microservice design
patterns, as well as finding and fixing performance antipat-
terns via architectural refactoring. These approaches focus
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their attention on finding and addressing violations in appli-
cations, in contrast to our approach of finding instantiations
of design patterns in continuously evolving systems.

5 DISCUSSION
Our work in mining specific, common design patterns from
distributed traces is unique, efficient, and covers a space of
distributed design patterns research that is less explored in
previous work. The system behaviors identified in this work
can have a variety of applications, most notably in building
domain knowledge, feature development, and debugging
behavioral and performance issues. Some examples are:

(1) If we determine that some service X can serve as a
fallback for both Y and Z, but a fallback has not yet
been configured for Z, developers may configure X as
a fallback for Z as well. Alternatively, if Z fails, traffic
may be temporarily redirected to X to keep the system
functional.

(2) If an increase in cache misses is observed at the same
time as a performance regression, investigating the
cache would be a good place to start.

(3) Finding examples of anti-patterns can help engineers
proactively identify and fix issues before they cause a
failure.

Retries follow a similar template to fallbacks within a sin-
gle execution, except both calls are to the same destination,
with the earlier call having failed. However, when querying
for this pattern, we found that retries are observed when er-
rors propagate up the trace graph when a fallback is invoked
not by the immediate caller, but a service higher up. We
speculate that retries that occur independently of fallbacks
could represent an anti-pattern, especially if the retry is to
the same service instance as the failed call.
Our first phase requires that application experts select

and transform fields in traces to obtain a common set of
labels that can be queried; a manual and tedious process.
We posit that we can address this issue by automating the
mapping process shown in Figure 2. These mappings are
simple examples of trace abstraction, in which the size and
complexity of traces are reduced by eliminating low-level
details and preserving causal relationships and necessary
information for trace comprehension. Successful usage of
trace abstraction would allow our tool to tolerate variation
in traces across applications and discrepancies within traces
due to non-deterministic effects. A trace abstraction-like
approach has been used in previous work in pattern-mining
from traces to account for dynamic program behavior [9].
We seek to develop a unified approach to trace abstraction
in future work.

6 CONCLUSION
Our techniques to identify instances of design patterns have
found instances of fallbacks and caching effects in distributed
traces in different applications. As discussed previously, find-
ing these provides some evidence that the system functions
as expected and has a variety of applications in building
domain knowledge, feature development, and debugging.
Future work in this space involves identifying and writing
queries for more such patterns and anti-patterns as well
as evaluating our techniques in a larger setting. Automati-
cally finding mappings in the application-specific phase to
reduce manual work for application experts is a challenging
direction of future work as well.
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